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Vector Algebra

Vector addition is commutative, and associative. Each vector also has an additive
inverse.

A+B = B +A

(A+B) +C = A+ (B +C)

A+ (−A) = 0

Scalar multiplication is distributive.

a(A+B) = aA+ aB

The dot product of two vectors is

A ·B = AB cos(θ)

with θ being the angle between each vector. The dot product is commutative, and dis-
tributive.

A ·B = B ·A

A · (B +C) = A ·B +A ·C

The cross product of two vectors is

A×B = AB sin(θ)n̂

with n̂ pointing normal to both vectors with the sign following the right-hand rule. The
cross product is distributive, and anti-commutative

A× (B +C) = (A×B) + (A×C)

(A×B) = −(B ×A)

Vectors can be broken up into their components. Using Cartesian coordinates, a vector
A will be

A = Axx̂+ Ayŷ + Azẑ

Adding vectors is as simple as adding components. For a dot product, you multiply identical
components.

αA+ βB = (αAx + βBx)x̂+ (αAy + βBy)ŷ + (αAz + βBz)ẑ

A ·B = AxBx + AyBy + AzBz

3



The cross product is a little more complicated, but can be found taking a determinant of a
special matrix.

A×B =

∣∣∣∣∣∣
x̂ ŷ ẑ
Ax Ay Az
Bx By Bz

∣∣∣∣∣∣
= (AyBz −ByAz)x̂+ (AzBx − AxBz)ŷ + (AxBy − AyBx)ẑ

The scalar triple product is A · (B × C). The dot and cross product can be inter-
changed.

A(̇B ×C) = (A×B) ·C

The vector triple product is A × (B × C) and is simplified with the BAC-CAB
rule.

A× (B ×C) = B(A ·C)−C(A ·B)

It is important to recognize that cross-products are not associative.
The position vector r in Cartesian coordinates is

r = xx̂+ yŷ + zẑ

with a magnitude
r =

√
x2 + y2 + z2

We can then define a displacement vector dl as

dl = dxx̂+ dyŷ + dzẑ

We want to define one more vector, the separation vector R which is

R = r − r′

with r′ being the source point, where the electric charge is located, and r being the field
point, where you are calculating the electric or magnetic field.

Example: Dot Product

Let C = A−B. The dot product of C with itself is

C ·C = (A−B) · (A−B) = A ·A−A ·B −B ·A+B ·B

C2 = A2 +B2 − 2AB cos(θ)
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Example: Cube Angles

We want to find the angle between the face diagonals of a cube. Using the unit cube will
make it easiest, so our two angles are

A = x̂+ ẑ

B = ŷ + ẑ

We can then take the dot product to find what we need.

A ·B = 1 = 2 cos(θ)

So

cos(θ) =
1

2
or

θ =
π

3

Differential Calculus

The differential of a scalar function T can be represented as

dT =
(∂T
∂x

)
dx+

(∂T
∂y

)
dy +

(∂T
∂z

)
dz

Using dot products and gradients, this can be written as

dT = (∇T ) · dl

There are three different types of differential operators for vector calculus: the gradient,
the divergence, and the curl. These can be represented by the following representations
in Cartesian, spherical, and cylindrical coordinates, respectively.

The Gradient:

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

= r̂
∂

∂r
+
θ̂

r

∂

∂θ
+

φ̂

r sin(θ)

∂

∂φ

= ŝ
∂

∂s
+
φ̂

s

∂

∂φ
+ ẑ

∂

∂z

The Divergence:

∇ · v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z
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=
1

r2
∂

∂r
(r2vr) +

1

r sin(θ)

∂

∂θ
(vθ sin(θ)) +

1

r sin(θ)

∂vφ
∂φ

=
1

s

∂

∂s
(svs) +

1

s

∂vφ
∂φ

+
∂vz
∂z

The Curl:

∇× v =
(∂vz
∂y
− ∂vy

∂z

)
x̂+

(∂vx
∂z
− ∂vz
∂x

)
ŷ +

( vy
∂x
− ∂vx

∂y

)
ẑ

=
1

r sin(θ)

( ∂
∂θ

(vφ sin(θ))− ∂vθ
∂φ

)
r̂ +

1

r

( 1

sin(θ)

∂vr
∂φ
− ∂

∂r
(rvφ)

)
θ̂ +

1

r

( ∂
∂r

(rvθ)−
∂vr
∂θ

)
φ̂

=
(1

s

∂vz
∂φ
− ∂vφ

∂z

)
ŝ+

(∂vs
∂z
− ∂vz

∂s

)
φ̂+

1

s

( ∂
∂s

(svφ)− ∂vs
∂φ

)
ẑ

Another important differential operator is the Laplacian ∇2.
The Laplacian:

∇2 =
∂2

∂x2
+
∂62

∂y2
+

∂2

∂z2

=
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

r2 sin2(θ)

∂2

∂φ2

=
1

s

∂

∂s

(
s
∂

∂s

)
+

1

s2
∂2

∂φ2
+

∂2

∂z2

The product rules are:
∇(fg) = f∇g + g∇f

∇(A ·B) = A× (∇×B) +B × (∇×A) + (A ·∇)B + (B ·∇)A

∇ · (fA) = f(∇ ·A) +A · (∇f)

∇ · (A×B) = B · (∇×A)−A · (∇×B)

∇× (fA) = f(∇×A)−A× (∇f)

∇× (A×B) = (B ·∇)A− (A ·∇)B +A(∇ ·B)−B(∇ ·A)
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Integral Calculus

Line Integrals

A line integral can be expressed as ∫ b

a

v · dl

where v is some vector function and dl is an infinitesimal displacement vector that points
in the direction of the path. There is a special notation for a line integral over a closed path
which is ∮

v · dl

Example: Line Integral Calculation

We want to calculate the line integral with the vector function v = y2x̂ + 2x(y + 1)ŷ from
a = (1, 1, 0) to the point b = (2, 2, 0) along two separate paths.

For path (1), the horizontal portion will have a displacement vector of dl = dxx̂. The
y-value is also unchanged at y = 1. The vertical portion will have a displacement vector of
dl = dyŷ. The x-value will be unchanged at x = 2. We can solve the line integral by adding
up the line integrals for each segment.∫ b

a

v · dl =

∫ 2

1

y2dx+

∫ 2

1

2x(y + 1)dy =

∫ 2

1

dx+

∫ 2

1

4(y + 1)dy = 11

For path (2), x = y, dx = dy, so the displacement vector is dl = dxx̂ + dxŷ. This will
give us the integrand v · dl = (3x2 + 2x)dx. Integrating this gives us∫ b

a

v · dl =

∫ 2

1

(3x2 + 2x)dx = 10

Since these values are not the same, the integral is not path independent and v is not
conservative.

Surface Integrals

A surface integral is of the form ∫
S
v · da

and has the closed form ∮
S
v · da

The v is some vector function, and the integral is over some specified surface S.
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Example: Surface Integral Calculation

We are going to calculate the surface integral of the vector function v = 2xzx̂+ (x+ 2)ŷ +
y(z2 − 3)ẑ over 5 sides of a cube with side length 2.

For side (i) we have x = 2, da = dydzx̂, v · da = 2xzdydz = 4zdydz.∫
v · da = 4

∫ 2

0

∫ 2

0

zdydz = 16

For side (ii) we have x = 0, and da = −dydzx̂ so this integral will be zero.
For side (iii) we have y = 2, da = dxdzŷ, v · da = (x+ 2)dxdz so∫

v · da =

∫ 2

0

∫ 2

0

(x+ 2)dxdz = 12

For side (iv) we have y = 0, −dxdzŷ, v · da = −(x+ 2)dxdz so∫
v · da = −

∫ 2

0

∫ 2

0

(x+ 2)dxdz = −12

For side (v) we have z = 2, da = dxdyẑ, v · da = y(z2 − 3)dxdy = ydxdy so∫
v · da =

∫ 2

0

∫ 2

0

ydxdy = 4

Adding these all together gives us ∫
S
v · da = 20

Volume Integrals

Volume integrals will be of the form ∫
V
Tdτ

or ∫
V
vdτ

with T being some scalar function.

Example: Volume Integral Calculation

We are going to evaluate the integral of scalar function T = xyz2 over the prism.∫
Tdτ =

∫ 3

0

∫ 1

0

∫ 1−y

0

xyz2dxdydz =
3

8
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The Fundamental Theorem of Calculus

In one dimension, this theorem looks like∫ b

a

( df
dx

)
dx = f(b)− f(a)

This can also be applied in multiple dimensions for gradients.∫ b

a

(∇T ) · dl = T (b)− T (a)

This tells us that gradients have line integrals that are path independent.

Example: The Fundamental Theorem for Gradients Calculation

We will apply the fundamental theorem of calculus for gradients to a scalar field T = xy2

from a = 0 to b = (2, 1, 0) for two separate paths.
For path (1), we can split it up into two parts. For part (i), we have y = 0, dl = dxx̂,

∇ · dl = y2dx = 0 so ∫
(i)

∇T · dl = 0

For part (ii), we have x = 2, dl = dyŷ, ∇ · dl = 2xydy = 4ydy so∫
(ii)

∇T · dl =

∫ 1

0

4ydy = 2

Adding these two parts together gives us∫
(1)

∇T · dl = 2

For path 2, we have y = 1
2
x, dy = 1

2
dx, ∇T · dl = y2dx+ 2xydy = 3

4
x2dx so∫

(2)

∇T · dl =

∫ 2

0

3

4
x2dx = 2

The Fundamental Theorem for Divergences∫
V
(∇ · v)dτ =

∮
S
v · da

This can also be called Gauss’s Theorem, Green’s theorem, or the divergence theorem.
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Divergence Theorem Calculation

We will check the divergence theorem using v = y2x̂+ (2xy+ z2)ŷ+ (2yz)ẑ on a unit cube.
We can start off with the divergence integral. The divergence of our vector function is

∇ · v = 2(x+ y)

Evaluating our integral gives us∫
V
∇ · vdτ =

∫
V

2(x+ y)dτ = 2

∫ 1

0

∫ 1

0

∫ 1

0

(x+ y)dxdydz = 2

We now need to look at the surface integral. For side (i) we have∫
v · da =

∫ 1

0

∫ 1

0

y2dydz =
1

3

Side (ii): ∫
v · da = −

∫ 1

0

∫ 1

0

y2dydz = −1

3

Side (iii): ∫
v · da =

∫ 1

0

∫ 1

0

(2x+ z2)dxdz =
4

3

Side (iv): ∫
v · da = −

∫ 1

0

∫ 1

0

z2dxdz = −1

3

Side (v): ∫
v · da =

∫ 1

0

∫ 1

0

2ydxdy = 1

Side (vi): ∫
v · da = −

∫ 1

0

∫ 1

0

0dxdy = 0

So ∮
S
v · da = 2

The Fundamental Theorem for Curls

The fundamental theorem for curls is often called Stokes’ Theorem.∫
S
(∇× v) · da =

∮
P
v · dl
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Example: Stokes’ Theorem Calculation

We are going to check Stokes’ Theorem with the vector function v = (2xz+ 3y2)ŷ+ (4yz2)ẑ
on a unit square. We have

∇× v = (4z2 − 2x)x̂+ 2zẑ

and
da = dydzx̂

The curl integral will then be∫
(∇× v) · da =

∫ 1

0

∫ 1

0

4z2dydz =
4

3

We can break the line integral into four segments and will find for side (i):

x, z = (0, 0), v · dl = 3y2dy∫
v · dl =

∫ 1

0

3y2dy = 1

side (ii):
x, y = (0, 1), v · dl = 4z2dz∫

v · dl =

∫ 1

0

4z2dz =
4

3

side (iii):
x, z = (0, 1), v · dl = 3y2dy∫
v · dl =

∫ 0

1

3y2dy = −1

side (iv):
x, y = (0, 0), v · dl = 0∫

v · dl = 0

The sum of all of these integrals will then be∮
v · dl =

4

3
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Integration by Parts

This is one of the most powerful tools in a physicists arsenal. It is basically the product rule
but backwards.The product rule is

d

dx
(fg) = f

(dg
dx

)
+ g
( df
dx

)
We can integrate both sides, and use the fundamental theorem to get∫ b

a

d

dx
(fg)dx = fg

∣∣b
a

=

∫ b

a

f
(dg
dx

)
dx+

∫ b

a

g
( df
dx

)
dx

∫ b

a

f
(dg
dx

)
dx = −

∫ b

a

g
( df
dx

)
dx+ fg

∣∣b
a

We can also exploit the product rule in more than one dimension with the vector calculus
product rules. One of those rules is

∇ · (fA) = f(∇ ·A) +A · (∇f)

We can integrate this over a volume and use divergence theorem to get∫
V
f(∇ ·A)dτ = −

∫
V
A · (∇f)dτ +

∮
S
dA · da

Example: Integration by Parts

We are going to evaluate ∫ ∞
0

xe−xdx

We can express the exponent as a derivative

e−x =
d

dx
(−e−x)

which gives us ∫ ∞
0

xe−xdx =

∫ ∞
0

e−xdx− xe−x
∣∣∞
0

= 1
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Spherical Coordinates

x = sin(θ) cos(φ)

y = sin(θ) sin(φ)

z = cos(θ)

r =
√
x2 + y2 + z2

θ = arctan

(√
x2 + y2

z

)

φ = arctan
(y
x

)
x̂ = sin(θ) cos(φ)r̂ + cos(θ) cos(φ)θ̂ − sin(φ)φ̂

ŷ = sin(θ) sin(φ)r̂ + cos(θ) sin(φ)θ̂ + cos(φ)φ̂

ẑ = cos(θ)r̂ − sin(θ)θ̂

r̂ = sin(θ) cos(φ)x̂+ sin(θ) sin(φ)ŷ + cos(θ)ẑ

θ̂ = cos(θ) cos(φ)x̂+ cos(θ) sin(φ)ŷ − sin(θ)ẑ

φ̂ = − sin(φ)x̂+ cos(φ)ŷ

dl = drr̂ + rdθθ̂ + r sin(θ)dφφ̂

dτ = r2 sin(θ)drdθdφ

Example: Spherical Volume

Let’s find the volume of a generic sphere with radius R.

V =

∫
dτ =

∫ 2π

0

∫ π

0

∫ R

0

r2 sin(θ)drdθdφ =
4

3
πR3
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Cylindrical Coordinates

x = s cos(φ)

y = s sin(φ)

z = z

s =
√
x2 + y2

φ = arctan
(y
x

)
z = z

x̂ = cos(φ)ŝ− sin(φ)φ̂

ŷ = sin(φ)ŝ+ cos(φ)φ̂

ẑ = ẑ

ŝ = cos(φ)x̂+ sin(φ)ŷ

φ̂ = − sin(φ)x̂+ cos(φ)ŷ

ẑ = ẑ

The Dirac Delta Function

The dirac delta function is a distribution with the following properties.

δ(x) =

{
0, if x 6= 0
∞, if x = 0

}
∫ ∞
−∞

δ(x)dx = 1

If f(x) is some ordinary function, if it is paired with a dirac delta function, the integral
becomes easy to evaluate. ∫ ∞

−∞
f(x)δ(x− a)dx = f(a)

Another property of the dirac delta function is

δ(kx) =
1

|k|
δ(x)

A similar function, the Heaviside step function θ(x) can be defined as

θ(x) =

{
1, if xg0
0, if x ≤ 0

}
14



The dirac delta function is the derivative of the heaviside step function.

dθ(x)

dx
= δ(x)

The dirac celta function can be naturally generalized to more than one dimension.

δ3(r) = δ(x)δ(y)δ(z)∫
allspace

δ3(r)dτ = 1

Using this, we can find the result of a particularly tricky divergence problem.

∇ ·
( r̂
r2

)
= 4πδ3(r)

or even better

∇ ·
( R̂
R2

)
= 4πδ3(R)

Since

∇
( 1

R

)
= − R̂
R2

it follows that

∇2 1

R
= −4πδ3(R)

The Theory of Vector Potentials

According to Helmholtz theorem, if the divergence D(r) and the curl C(r) of a vector
function F (r) are specified, and if they both go to zero faster than 1/r2 as r → ∞, and if
F (r) goes to zero as r →∞, then F is given uniquely by

F = −∇U +∇×W

with

U(r) =
1

4π

∫
D(r′)

R
dτ ′

and

W (r) =
1

4π

∫
C(r′)

R
dτ ′

If the curl of a vector field vanishes everywhere, then it can be written as the gradient of a
scalar potential.

∇× F ↔ F = −∇Φ
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If the divergence of a field vanishes everywhere, then it can be written as the curl of a vector
potential.

∇ · F = 0↔ F =∇×A

We can, therefore, describe any field by a sum of a gradient of a scalar potential and the
curl of a vector potential.

F = −∇Φ +∇×A

Irrotational Fields

An irrotational field will have the following properties:

∇× F = 0∫ b

a

F · dl is path independent∮
F · dl = 0

F = −∇Φ

Solenoidal Fields

A solenoidal field will have the following properties:

∇ · F = 0∫
F · da is surface independent∮

F · da = 0

F =∇×A
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