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Vector Algebra

Vector addition is commutative, and associative. FEach vector also has an additive
inverse.

A+B=B+ A
(A+B)+C=A+(B+C)
A+ (-A)=0
Scalar multiplication is distributive.
a(A+ B)=aA+aB
The dot product of two vectors is
A - B = ABcos(0)

with 6 being the angle between each vector. The dot product is commutative, and dis-
tributive.
A-B=B-A

A (B+C)=A-B+A-C
The cross product of two vectors is

A X B = ABsin(f)n

with 7 pointing normal to both vectors with the sign following the right-hand rule. The
cross product is distributive, and anti-commutative

AX(B+C)=(AxB)+(AxC)

(AXxB)=—-(BxA)

Vectors can be broken up into their components. Using Cartesian coordinates, a vector
A will be

A=Ad+ Ag+ Az

Adding vectors is as simple as adding components. For a dot product, you multiply identical
components.

aA+ BB = (aA, + BB,)& + (0Ay + 5By)y + (aA, + B,)2

A-B=A,B,+A,B,+ A.B.



The cross product is a little more complicated, but can be found taking a determinant of a
special matrix.

AxB=|4, A, A
B, B, B

x z

y
= (A,B, — ByA,)x + (A.B, — A, B.)y + (A,B, — A B,)2

The scalar triple product is A - (B x C). The dot and cross product can be inter-
changed.

ABxC)=(AxB)-C

The vector triple product is A X (B x C) and is simplified with the BAC-CAB
rule.
AxXx(BxC)=B(A-C)-C(A-B)

It is important to recognize that cross-products are not associative.
The position vector r in Cartesian coordinates is

T =1L+ yy+ 22

with a magnitude
r=\/x? 4 y? + 22

We can then define a displacement vector dl as
dl = dz& + dyy + dz2
We want to define one more vector, the separation vector R which is
R=r—17

with 7’ being the source point, where the electric charge is located, and r being the field
point, where you are calculating the electric or magnetic field.

Example: Dot Product
Let C = A — B. The dot product of C' with itself is

C.C=(A-B) (A-B)=A-A-A-B-B-A+B B

C? = A + B* — 2AB cos(f)



Example: Cube Angles

We want to find the angle between the face diagonals of a cube. Using the unit cube will
make it easiest, so our two angles are

A=+ 2

B=g+2
We can then take the dot product to find what we need.
A-B=1=2cos(h)

So )
cos(f) = 5

or -
o="_
3

Differential Calculus

The differential of a scalar function 7' can be represented as
oT oT oT

Using dot products and gradients, this can be written as
dT' = (VT)-dl

There are three different types of differential operators for vector calculus: the gradient,
the divergence, and the curl. These can be represented by the following representations
in Cartesian, spherical, and cylindrical coordinates, respectively.

The Gradient:

The Divergence:
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The Curl:

vxo= (G- 5)

o+ (- a)ot (552
= rsilll(Q) (aae(w) sin(f)) — 88—12))? + %(sinl(ﬁ) %ﬁ; — %(rw))@ + 1(881” (rvg) —
- (i3 - 7)o+ (G- T+ (G - 52

Another important differential operator is the Laplacian V2.
The Laplacian:

2062 o
2 e — [ [
V= 0x? + oy? + 0z
B 10 ) -
_ (27 - . -
= 55,(750) sin(9) 96 (sn@)35) + 72 Sin?(8) 9°
1a(g>+1 o2 +a2
s0s\ 0Os s2 D2

The product rules are:
v(f ) fVg+gVf
V(A -B)=AXx(VXB)+Bx(VxA+(A-V)B+(B-V)A
-(fA)Zf(V-A)+A-(Vf)
V.- (AXxB)=B-(VxA)—A (VX B)
VX (fA)=[f(VXA)-AX(V])
VX(AXxB)=(B-V)JA-(A-V)B+A(V-B)-B(V-A)

ov,
ol

)



Integral Calculus

Line Integrals

A line integral can be expressed as

b
/ v-dl

where v is some vector function and dl is an infinitesimal displacement vector that points
in the direction of the path. There is a special notation for a line integral over a closed path

which is
?{ v-dl

We want to calculate the line integral with the vector function v = y?& + 2z(y + 1)¢ from
a = (1,1,0) to the point b = (2,2,0) along two separate paths.

For path (1), the horizontal portion will have a displacement vector of dl = dx&. The
y-value is also unchanged at y = 1. The vertical portion will have a displacement vector of
dl = dyy. The x-value will be unchanged at x = 2. We can solve the line integral by adding
up the line integrals for each segment.

b 2 2 2 2
/ v-dl = / yide + / 2x(y + 1)dy = / dx + / 4y + 1)dy =11
a 1 1 1 1

For path (2), = y, de = dy, so the displacement vector is dl = dz& + drg. This will
give us the integrand v - dl = (3% + 2x)dz. Integrating this gives us

b 2
/v-dl:/(3x2+2x)dx:10
a 1

Since these values are not the same, the integral is not path independent and v is not
conservative.

Example: Line Integral Calculation

Surface Integrals

A surface integral is of the form

/'v-da

S

fv-da
S

The v is some vector function, and the integral is over some specified surface S.

and has the closed form
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Example: Surface Integral Calculation

We are going to calculate the surface integral of the vector function v = 2zz& + (x + 2)g +
y(2? — 3)2 over 5 sides of a cube with side length 2.
For side (i) we have x = 2, da = dydz&, v - da = 2xzdydz = 4zdydz.

2 2
/v-da:4//zdydz:16
o Jo

For side (ii) we have z = 0, and da = —dydz& so this integral will be zero.
For side (iii) we have y = 2, da = dzdzg, v - da = (x + 2)dxdz so

2 2
/v-da—//(x—i-Q)dxdz—lZ
o Jo

For side (iv) we have y = 0, —dzdzg, v - da = —(x + 2)dzdz so

2 2
/v-da:—//(x—l—Z)dxdz:—lQ
o Jo

For side (v) we have z = 2, da = dxdyZz, v - da = y(2* — 3)dxdy = ydxdy so

2 2
/v-da://ydxdy:4
0o Jo

Adding these all together gives us
/ v-da =20
S

Volume Integrals

Volume integrals will be of the form

/ Tdr

V

/ vdr
v

Example: Volume Integral Calculation

or

with T" being some scalar function.

We are going to evaluate the integral of scalar function 7" = zyz? over the prism.

3 1 1—y 3
/TdT:/ / / ry22dedydz = =
o Jo Jo 8
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The Fundamental Theorem of Calculus

In one dimension, this theorem looks like

[ (e = 1)~ 500

This can also be applied in multiple dimensions for gradients.

/b(VT) -dl=T(b) —T(a)

This tells us that gradients have line integrals that are path independent.

Example: The Fundamental Theorem for Gradients Calculation

We will apply the fundamental theorem of calculus for gradients to a scalar field T = zy?
from @ = 0 to b = (2,1,0) for two separate paths.
For path (1), we can split it up into two parts. For part (i), we have y = 0, dl = dz,

V -dl = y*dx = 0 so
/ VT -dl =0
(@)

For part (ii), we have z = 2, dl = dyg, V - dl = 2zydy = 4ydy so

1
VT-dl—/ dydy = 2
(id) 0

Adding these two parts together gives us

VT .dl =2
1)

For path 2, we have y = 1z, dy = 1dx, VT - dl = y*dz + 2zydy = 32*dx so

23
/VT-dl:/ Zx?de = 2
@) o 4

The Fundamental Theorem for Divergences

/V(V-'v)dT:%gv-da

This can also be called Gauss’s Theorem, Green’s theorem, or the divergence theorem.
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Divergence Theorem Calculation

We will check the divergence theorem using v = y*& + (2zy + 2?)§ + (2y2)2 on a unit cube.
We can start off with the divergence integral. The divergence of our vector function is

V.-v=2xz+y)

Evaluating our integral gives us

1 op1opl
/V-vd7=/2(x—|—y)d7=2/ / /(:L’+y)dxdydz:2
1% 1% o Jo Jo

We now need to look at the surface integral. For side (i) we have

11 1
/v-da://yzdydz:—
o Jo 3

Side (ii):
1 1 ) 1
v-da =— y dydz = — -
0o Jo 3
Side (iii):
1 1 ) 4
v-da = (2x + 2%)dxdz = =
o Jo 3
Side (iv):
Lot 1
v-da=— 2odxdz = — =
o Jo 3
Side (v):
1l
/'v~da://2yd:cdy:1
o Jo
Side (vi):
1l
/v-da:—//dedy:O
o Jo
So

%v-da:2
S

The Fundamental Theorem for Curls

The fundamental theorem for curls is often called Stokes’ Theorem.

/S(Vx'v)-dazjiv-dl
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Example: Stokes’ Theorem Calculation

We are going to check Stokes” Theorem with the vector function v = (2zz + 3y?)g + (4y2?)2
on a unit square. We have
V X v= (42" —22)& + 222

and
da = dydzx

The curl integral will then be

1 4
/(VXv)-da:/ / 422dydz = —
o Jo 3

We can break the line integral into four segments and will find for side (i):

z,z=(0,0), v-dl = 3y*dy

1
/'U-dl—/ 3ytdy = 1
0

z,y=(0,1), v-dl = 42°dz

1
4
/'v-dl:/ 42%dz = -
0 3

r,z=(0,1), v-dl = 3y*dy

0
/v-dl:/ 3ytdy = —1
1

z,y=1(0,0),v-dl =0

/v-dl:O

The sum of all of these integrals will then be

4
dl = =
7{” 3

side (ii):

side (iii):

side (iv):
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Integration by Parts

This is one of the most powerful tools in a physicists arsenal. It is basically the product rule
but backwards.The product rule is
()
g dx

)= r(52) +

We can integrate both sides, and use the fundamental theorem to get

[ s =rl= [ 1(%E)ar+ [ o(E)ar
[ Ge = [ o) st

We can also exploit the product rule in more than one dimension with the vector calculus
product rules. One of those rules is

V- (fA)=f(V-A)+A-(V])

We can integrate this over a volume and use divergence theorem to get
/f(VA)dT_—/A-(Vf)dH]{dA.da
v v S

Example: Integration by Parts

oo
/ ze Tdx
0

We can express the exponent as a derivative

We are going to evaluate

which gives us
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Spherical Coordinates
x = sin(f) cos(¢)
y = sin(0) sin(¢)
z = cos(h)
e ETRTE
¢ = arctan <—M>
)
& = sin(f) cos(@)7 + cos(8) cos(¢)@ — sin(e)
§ = sin(f) sin(¢)# + cos(#) sin(¢)@ + cos(¢)
= cos(0)7 — sin(0)0
7 = sin(0) cos(¢)& + sin(0) sin(¢)y + cos(0) 2
6 = cos(6) cos(6)@ + cos(8) sin(6)g — sin(6)
¢ = —sin(¢)& + cos(¢)y
dl = dr# + rdf0 + rsin(0)dod
dr = r*sin(6)drdfde

o= arctan(

SEES

N)

N

Example: Spherical Volume

Let’s find the volume of a generic sphere with radius R.

2 pw R 4
= /dT = / / / r?sin(0)drdfd¢ = —mR®
o Jo Jo 3
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Cylindrical Coordinates

x = scos(¢p)

y = ssin(9)

The Dirac Delta Function

The dirac delta function is a distribution with the following properties.

5(:6):{ 0, ifx;«éo}

oo, ifz=0

/00 d(x)dr =1

—00
If f(x) is some ordinary function, if it is paired with a dirac delta function, the integral
becomes easy to evaluate.

/ffmwm—aMx:ﬂ@

Another property of the dirac delta function is

5(ha) — ’—;(5(3:)

A similar function, the Heaviside step function 6(z) can be defined as

|1, if xg0
9(3”)_{0, ifxgo}
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The dirac delta function is the derivative of the heaviside step function.

aoz) _
a0

The dirac celta function can be naturally generalized to more than one dimension.

6%(r) = 8()d(y)d ()

/ 5(r)dr = 1
allspace

Using this, we can find the result of a particularly tricky divergence problem.
v. (i> = 478%(r)

or even better

v (%) — 470%(R)
Since X %
V(%) =%

it follows that )
V2% = —4710%(R)

The Theory of Vector Potentials

According to Helmholtz theorem, if the divergence D(r) and the curl C(r) of a vector
function F(r) are specified, and if they both go to zero faster than 1/r* as r — oo, and if
F(r) goes to zero as r — oo, then F' is given uniquely by

F=-VU+VXW
_ 1 /D),
U(T)—E/TdT

W(r) = %/Cgl)m'

If the curl of a vector field vanishes everywhere, then it can be written as the gradient of a
scalar potential.

with

and

VXF&F=-Vo

15



If the divergence of a field vanishes everywhere, then it can be written as the curl of a vector

potential.
V- F=0+F=VXxA

We can, therefore, describe any field by a sum of a gradient of a scalar potential and the

curl of a vector potential.
F=-VdP+VXxXA

Irrotational Fields

An irrotational field will have the following properties:

VXF=0

b
/ F' - dl is path independent
j[F ~dl =0
F=-Vo

Solenoidal Fields
A solenoidal field will have the following properties:

V-F=0

/ F - da is surface independent
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