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Problem 1

In class, using the exactness of Helmholtz free energy, we derived one of the

Maxwell relations,
(
∂S
∂V

)
T

=
(
∂P
∂T

)
V
. Now, let us derive another Maxwell relation:

The Gibbs free energy is defined as, G = F + pV .
a) Show that dG = −SdT + V dp.

b) Using the result from part a, prove that −
(
∂S
∂P

)
T

=
(
∂V
∂T

)
P
.

Solution

a) We know that
dG = dF + V dp+ pdV

and
dF = −SdT − pdV

Plugging in the expression for dF into Gibbs equation gives

dG = V dp+ pdV − SdT − pdV = V dp− SdT

Which is what we’re after.
b) We can also express the Gibbs free energy in a different way using partial differentials.

dG =
(∂G
∂T

)
p
dT +

(∂G
∂p

)
T
dp

Comparing it to what we found in part a, this gives us(∂G
∂T

)
p

= −S
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(∂G
∂p

)
T

= V

A neat feature of partial differentiation is that the order doesn’t matter so we can say

∂2G

∂p∂T
=

∂2G

∂T∂p

Using what we know about the first order partial derivatives of G, we find that(∂S
∂p

)
T

= −
(∂V
∂T

)
p

which is exactly what we are looking for.

Problem 2

Over the past decade, there has been much discussion in the press of centrifuges,
suspected parts for centrifuges, and their impact on nuclear non-proliferation. In
this problem, we will examine the capabilities of centrifuges for Uranium isotope
separation.

a) Consider a hollow cylinder of radius R and length L that rotates about
its axis with an angular velocity ω. Assume that the cylinder is filled with an
ideal gas of atoms of mass M at temperature T . Find an expression for the
concentration of atoms n(r) as a function of the radial distance r from the axis.
Express your answer in terms of the concentration on the axis n(0).

b) Use your result from part a to solve for the concentration on the axis of
rotation n(0) under the constraint that the average density is n̄. Use this result
to write an expression for the concentration as a function of radius. Centrifuges
can be used to separate isotopes of Uranium. The natural abundances of U-
238 and U-235 are roughly 99 percent and 1 percent respectively. The highly
enriched uranium typically used in nuclear weapons contains about 90 percent
of U-235.

c) Assume that the cylinder is filled with an ideal gas of UF6 (Uranium Hex-
afluoride, A = 19 for fluorine) where the uranium has the natural isotopic abun-
dance. Find an expression for the ratio of the isotopic concentrations in the
gas at the axis of the centrifuge m238 and m235 and the concentrations before
centrifuge is set to spinning n̄235 and n̄238.

d) Find an approximate expression for the required speed of the centrifuge
shell in order to achieve enrichment of the gas on the centrifuge axis by a factor
of ≈ e. How does this speed compare with the speed of sound in air? Note:
The speed of sound in air is vs ≈

√
γkT/m with γ = 7/5 and m the mass of a
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N2 molecule. In practice, several centrifuges will need to be cascaded to achieve
sufficient enrichment for weapons production.

Solution

a) While in the non-inertial frame of the centrifuge, the only force acting on the gas is a
centrifugal force

F = Mω2Rr̂

This gives us a potential energy of

V = −
∫

F · dr = −Mω2r2

2

The probability distribution will then be

n(r) = CeβEr = Ce
βMω2r2

2

At the axis, the concentration will be

n(0) = C

So the concentration is

n(r) = n(0)e
βMω2r2

2

b) The total amount of particles is

N =

∫
n(r)dV = 2πL

∫
n(r)rdr = n̄πLR2

We can plug in the result from part a and integrate

N = 2πL

∫ R

0

n(0)e
βMω2r2

2 rdr

n̄R2 = 2n(0)

∫ R

0

e
βMω2r2

2 rdr = 2n(0)
kBT

Mω2

(
1− e

MR2
M

2

2kBT

)
Solving for n(0) gives us

n(0) =
n̄Mω2R2

2kBT (1− e
MR2ω2

2kBT )

which gives us

n(r) =
n̄Mω2R2e

Mr2ω2

2kBT

kBT (1− e
MR2ω2

2kBT )
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c) The ratio of concentrations along the axis is

n235(0)

n238(0)
=
( ¯n235M235

¯n238M238

)(eM238ω
2R2

2kBT − 1

e
M235ω

2R2

2kBT − 1

)
d) The exponents will need to be large, so we can simplify the concentration ratio as

n235(0)

n238(0)
=
( ¯n235M235

¯n238M238

)
e

(M238−M235)ω2R2

2kBT

We want this exponent to have a value of e, so

(M238 −M235)ω
2R2

2kBT
= 1

Solving for v = Rω, we get

v = Rω =

√
2kBT

M238 −M235

The speed of sound for the nitrogen is

vs =

√
γkBT

m
=

√
kBT

20

compared to the velocity from before

v =

√
2kBT

3

Shows us that the shell of the centrifuge is moving faster than the speed of sound.

Problem 3

This problem involves a simplified model for the hemoglobin molecule. Assume
that there is a single site on the hemoglobin molecule consisting of an F+2 ion
that can bind one oxygen molecule (In reality, the situation is somewhat more
complex.) Take the energy of the free and bound states to be 0 and εO2 respec-
tively. Assume that the hemoglobin molecule is much more massive than the O2

molecule, and that the system is at a temperature of 300K.
a) Write down an expression for the Gibbs sum in this system.
b) Through the action of the lungs, the blood is an approximate diffusive

equilibrium with the atmosphere. Assume that the atmosphere is an ideal gas
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with a partial pressure for O2 of about 0.2 atm. Calculate the chemical potential
of oxygen molecules in the blood at room temperature. Express your answer
in electron volts. (Hint: An atom of oxygen has an atomic weight of about 16
atomic mass units.)

c) Write an expression for the probability that any given hemoglobin molecule
will have an O2 molecule bound to it. Evaluate your answer using the result
from part b and the approximate binding energy of the O2 to the hemoglobin
ε = −0.7eV .

d) Now, assume that there is also some carbon monoxide present that can
be bound to the site on the hemoglobin molecule instead of the oxygen. Write
down the Gibbs sum of the new system. Express your result in terms of the
energies for the bound states (εO2 , εCO) and the chemical potentials (µO2 , µCO) of
the O2 and CO molecules.

e) We somewhat arbitrarily define asphyxiation as occurring when only 50
percent of the available hemoglobin molecules have bound oxygen molecules.
Find an expression for the ratio of the CO and O2 concentrations when this
condition occurs. The CO molecule is bound to the hemoglobin with an energy
εCO = −0.85eV . What partial pressure of CO molecules will result in asphyxia-
tion? Express your answer in atmospheres.

Solution

a) The Gibbs sum is

ζ =
∑
N

∑
s(N)

e−β(εs(N)−µN) = 1 + e−β(ε−µ)

we can define
λ = eβµ

so
ζ = 1 + λe−βεO2

b) The chemical potential for an ideal gas is

µ = kT ln(λ) = kT ln

(
n

nQ

)
= kT ln

(
p

kTnQ

)
= kT ln

(
p(2πh̄2)

3
2

kT
5
2M

3
2

)
µ ≈ −0.6eV

c) The probability of an occupied site is

P =
λe−βεO2

1 + λe−βεO2
=

e0.1β

1 + e0.1β
≈ 47.86

48.86
= 0.98
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d) The new Gibbs sum will be

ζ = 1 + e−β(εO2
−µO2

) + e−β(εCO−µCO)

e) We need to look at the chemical potentials for each gas. We can add in a term x that
is the ratio of CO to O2

µCO = kT ln

(
nCO
nQ

)
= kT ln

(
nO2x

nQ

)
= kT ln(x) + kT ln

(
nO2

nQ

)
= kT ln(x) + µO2

The probability of O2 occupying the site can be set to 1/2 and we can use this chemical
potential relation to solve for x.

P =
1

2
=

e−β(εO2
−µO2

)

1 + e−β(εO2
−µO2

) + e−β(εCO−µCO)

=
e−β(εO2

−µO2
)

1 + e−β(εO2
−µO2

) + e−β(εCO−µO2
−kT ln(x))

=
47.86

48.86 + 15848.11x

x = 0.003

This is extremely small which shows that just a little bit of CO is enough to be killer. The
O2 has a partial pressure of 0.2 atm and we have the ratio of CO to O2 so the partial pressure
of CO to cause asphyxiation will be

pCO = xpO2 = 6.0 × 10−4atm

Problem 4

A neutral gas consists of Ne electrons (e−), Np protons (p+) and NH hydrogen
atoms (H). An electron and proton can combine to form hydrogen, e− + p+ → H.
At fixed temperature and volume, the free energy of the system is

F (T, V ;Ne, Np, NH)

We can define a chemical potential for each of the three species µ =
(
∂F
∂N

)
T,V

.

a) By minimizing the free energy, together with suitable constraints on the
particle numbers, show that the condition for equilibrium is µe + µp = µH. Such
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reactions usually take place at constant pressure, rather than constant volume.
What quantity should you consider instead of F in this case?

b) As you know, the Hydrogen atom (in it’s ground state) has binding energy
E = −∆ = −13.6eV . Let the number of Hydrogen atoms be NH = (1−x)N and the
number of electrons and protons be Ne = Np = xN . By treating the system as
three ideal gases in the grand canonical ensemble, use the equilibrium condition
found in part a to show that

x2

1− x
=
V

N

( memp

2πh̄2mH

) 3
2
(kBT )

3
2 e

− ∆
kBT

Solution

a) We have the three differentials for the chemical potential of each particle.

µe =
∂F

∂Ne

, µp =
∂F

∂Np

, µH =
∂F

∂NH

We also have the constraints

N = NH +Ne, Ne = Np

Looking at the total differential of the Helmholtz free energy in respect to the quantity of
electrons gives us

dF

dNe

=
∂F

∂Ne

+
∂F

∂Np

dNp

dNe

+
∂F

∂NH

dNH

dNe

= µe + µp − µH = 0

or
µe + mp = µH

At constant pressure it is better to use the Gibbs free energy.
b) The chemical potential of hydrogen is

µH = µintH + µextH = µintH −∆

Treating the gases as ideal gases

µint = kBT ln
(
nλ3
)

so
kBT ln

(
neλ

3
e

)
+ kBT ln

(
npλ

3
p

)
= kBT ln

(
nHλ

3
H

)
−∆
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Combining the logarithm terms gives us

ln

(
nenpλ

3
eλ

3
p

nHλ3H

)
= − ∆

kBT

Now, we can simplify this using

ne = np =
xN

V
, nH =

(1− x)N

V
, n =

N

V
so

ln

(
x2N2

(1− x)NV

√
m3
Hk

3
BT

34π2h̄4

m3
em

3
pk

6
BT

62πh̄2

)
= − ∆

kBT

Solving for x2/(1− x) gives us

x2

1− x
=
V

N

(kBTmemp

2πh̄2mH

) 3
2
e
− ∆
kBT

which is what we are looking for.

Problem 5

Consider an absorbent surface having N sites each of which can absorb one gas
molecule, and upon absorption the molecule’s energy is −ε0. Suppose that these
absorbing sites are in contact with the particle reservoir which is an ideal gas
at pressure p. Assuming the number of particles in the ideal gas is much larger
than N , so that even if all absorbing sites are full the change in the ideal gas
particle number is negligible.

a) Find the chemical potential of the ideal gas.
b) Calculate the grand partition function of the absorbing surface.
c) Show that the average fraction of occupied sites on the surface is

f =
1

1 + e−β(ε0+µ)

d) Express the absorbed fraction as a function of p and T .

Solution

a) We start off find the Helmholtz free energy

F = −kBTN ln

(
V

λ3

)
+ kBT ln(N !)
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= −kBTN ln

(
V

λ3

)
+NkBT ln(N)−NkBT

To find the chemical potential, we just need to differentiate this with respect to the particle
number

µ =
∂F

∂N
= −kBT ln

(
V

λ3

)
= kBT ln

(
nλ3
)

Using PV = NkBT we can solve this in terms of the pressure

µ = kBT ln

(
pλ3

kBT

)
b) The grand partition function will be

ZGC =
N∑
n=0

[
N
n

]
e−βn(−ε0−µ)

= (1 + eβ(ε0+µ))N

c) We can find the average occupied states by

〈n〉 =
1

ZGC

∂ZGC
∂(β(ε0 + µ))

=
N

1 + e−β(ε0+µ)

Dividing this by N gives us the average fraction of occupied states on the surface

f =
〈n〉
N

=
1

1 + e−β(ε0+µ)

d) We need to rewrite the distribution function in a more useful way.

f =
1

1 + e−β(ε0+µ)
=

eβµ

e−βε0 + eβµ

We can use what we found in part a to get this in terms of pressure to get

f =

pλ3

kBT

e−βε0 + pλ3

kBT

=
p

p+ kBT
λ3 e−βε0
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