Analytic Mechanics Homework Assignment 12

Todd Hirtler

28Apr20

Problem 1

(Taylor 13.6) In discussing the oscillation of a cart on the end of a spring, we almost always ignore the mass of the spring. Set up the Hamiltonian \mathcal{H} for a cart of mass m on a spring (force constant k) whose mass M is not negligible, using the extension x of the spring as the generalized coordinate. Solve Hamilton's equations and show that the mass oscillates with the angular frequency $\omega = \sqrt{k/(m+M/3)}$. That is, the effect of the spring's mass is to add M/3 to m. (Assume that the spring's mass is distributed uniformly and that it stretches uniformly.)

Solution

The kinetic energy will get an extra term

$$T_{spr} = \frac{1}{2} \int_0^L u^2 dM$$

with $u = \frac{\dot{x}x}{L}$. Each mass element is

$$dM = \frac{Mdx}{L}$$

which makes this integral

$$T_{spr} = \frac{M\dot{x}^2}{2L^2} \int_0^L x^2 dx = \frac{M\dot{x}^2}{6}$$

This gives a total kinetic energy of

$$T = \frac{1}{2} \left(m + \frac{M}{3} \right) \dot{x}^2$$

The potential energy is

$$U = \frac{1}{2}kx^2$$

The Lagrangian for this system is then

$$\mathcal{L} = \frac{1}{2} \left(m + \frac{M}{3} \right) \dot{x}^2 - \frac{1}{2} k x^2$$

The generalized momentum will then be

$$\frac{\partial \mathcal{L}}{\partial \dot{x}} = \left(m + \frac{M}{3}\right) \dot{x} = p$$

The Hamiltonian for this system is then

$$\mathcal{H} = p\dot{x} - \frac{1}{2}p\dot{x} + \frac{1}{2}kx^2 = \frac{p^2}{2(m + \frac{M}{3})} + \frac{1}{2}kx^2$$

The Hamilton equations will then be

$$-\frac{\partial \mathcal{H}}{\partial x} = -kx = \dot{p}$$
$$\frac{\partial \mathcal{H}}{\partial p} = \frac{p}{m + \frac{M}{3}} = \dot{x}$$

Combing these together gives us

$$\left(m + \frac{M}{3}\right)\ddot{x} = -kx$$

which has solutions of the form

$$x = A\cos(\omega t - \delta) + B\sin(\omega t - \delta)$$

with

$$\omega = \sqrt{\frac{k}{m + \frac{M}{3}}}$$

Problem 2

(Taylor 13.17) Consider the mass confined to the surface of a cone described in Example 13.4 (page 533). We saw that there are solutions for which the mass remains at the fixed height $z = z_0$, with fixed angular velocity $\dot{\phi}_0$ say.

a) For any chosen value of p_{ϕ} , use (13.34) to get an equation that gives the corresponding value of the height z_0 .

b) Use the equations of motion to show that this motion is stable. That is, show that if the orbit has $z = z_0 + \epsilon$ with ϵ small, then ϵ will oscillate about zero.

c) Show that the angular frequency of these oscillations is $\omega = \sqrt{3\phi_0 \sin(\alpha)}$, where α is the half angle of the cone $(\tan(\alpha) = c$ where c is the constant in $\rho = cz$).

d) Find the angle α for which the frequency of oscillation ω is equal to the orbital angular velocity $\dot{\phi}_0$, and describe the motion for this case.

Solution

a) The equations given by 13.34 are

$$\begin{split} \dot{z} &= \frac{\partial \mathcal{H}}{\partial p_z} = \frac{p_z}{m(c^2+1)}\\ \dot{p}_z &= -\frac{\partial \mathcal{H}}{\partial z} = \frac{p_\phi^2}{mc^2 z^3} - mg \end{split}$$

Which can be used to make the equation of motion

$$m(c^2+1)\ddot{z} = \frac{p_{\phi}^2}{mc^2z^3} - mg = 0$$

All we need to do is solve for z

$$\frac{1}{z^3} = \frac{m^2 gc^2}{p_\phi^2}$$
$$z_0 = \sqrt[3]{\frac{p_\phi^2}{m^2 gc^2}}$$

b) The equations of motion are

$$m(c^2+1)\ddot{z} = \frac{p_{\phi}^2}{mc^2z^3} - mg$$

We can then use variation of parameters to get

$$\begin{split} m(c^2+1)\ddot{\epsilon} &= \frac{p_{\phi}^2}{mc^2(z_0+\epsilon)^3} - mg\\ &= \frac{p_{\phi}^2}{mc^2z_0^3}\frac{1}{(1+\frac{\epsilon}{z_0})^3} - mg \end{split}$$

Using a Taylor expansion and ignoring all but the first two terms gives

$$m(c^{2}+1)\ddot{\epsilon} = mg\left(1 - \frac{3\epsilon}{z_{0}}\right) - mg$$
$$= -\frac{3mg\epsilon}{z_{0}}$$
$$\ddot{\epsilon} = -\frac{3g}{z_{0}(c^{2}+1)}\epsilon$$

This oscillation is stable.

c) We can solve for z_0 replacing p_{ϕ} with $mc^2 z_0^2 \dot{\phi}$ which gives us

$$z_{0} = \sqrt[3]{\frac{m^{2}c^{4}z_{0}^{2}\dot{\phi}_{0}^{2}}{m^{2}c^{2}g}} = z_{0}\sqrt[3]{\frac{c^{2}z_{0}\dot{\phi}_{0}^{2}}{g}}$$
$$g = c^{2}z_{0}\dot{\phi}_{0}^{2}$$
$$z_{0} = \frac{g}{c^{2}\dot{\phi}_{0}^{2}}$$

This gives us the frequency

$$\omega = \sqrt{\frac{3g}{z_0(c^2 + 1)}} = \sqrt{\frac{3c^2\dot{\phi}_0^2}{c^2 + 1}} = \sqrt{3}\dot{\phi}_0\sin(\alpha)$$

d) The angle α will have to be

$$\alpha = \arcsin\left(\frac{1}{\sqrt{3}}\right) \approx 35.26^{\circ}$$

In this case, the path of the mass is a closed orbit and that there is only one unique position per given ϕ .

Problem 3

(Taylor 13.18) All of the examples in this chapter and all of the problems (except this one) treat forces that come from a potential energy U(r) [or occasionally U(r,t)]. However, the proof of Hamilton's equations given in Section 13.3 applies to any system for which Lagrange's equations hold, and this can include forces not derivable from a potential energy. An important example of such a force is the magnetic force on a charged particle.

a) Use the Lagrangian (7.103) to show that the Hamiltonian for a charge q in an electromagnetic field is

$$\mathcal{H} = \frac{(\boldsymbol{p} - q\boldsymbol{A})^2}{2m} + qV$$

(This Hamiltonian plays an important role in the quantum mechanics of charged particles.)

b) Show that Hamilton's equations are equivalent to the familiar Lorentz force equation $m\ddot{r} = q(E + v \times B)$.

Solution

a) The Lagrangian is

$$\mathcal{L} = \frac{1}{2}m\dot{\boldsymbol{r}}^2 - q(V - \dot{\boldsymbol{r}} \cdot \boldsymbol{A})$$

The generalized momentum will be

$$\frac{\partial \mathcal{L}}{\partial \dot{r}} = m \dot{\boldsymbol{r}} + q \boldsymbol{A} = \boldsymbol{p}$$

and

$$\dot{\boldsymbol{r}} = \frac{\boldsymbol{p} - q\boldsymbol{A}}{m}$$

We can then express the Hamiltonian as

$$\mathcal{H} = m{p}\cdot m{\dot{r}} - \mathcal{L}$$

$$\mathcal{H} = \mathbf{p} \cdot \mathbf{q} - \frac{m}{2} \left(\frac{\mathbf{p}^2 - 2q\mathbf{A} \cdot \mathbf{p} + q^2 \mathbf{A}^2}{m^2} \right) + qV - q \left(\frac{\mathbf{p} \cdot \mathbf{A} - 1\mathbf{A}^2}{m} \right)$$
$$= \frac{\mathbf{p}^2 - q\mathbf{A} \cdot \mathbf{p}}{m} - \frac{\mathbf{p}^2 - 2q\mathbf{A} \cdot \mathbf{p} + q^2 \mathbf{A}^2}{2m} + qV - q \left(\frac{\mathbf{p} \cdot \mathbf{A} - q\mathbf{A}^2}{m} \right)$$
$$= \frac{\mathbf{p}^2 - 2q\mathbf{A} \cdot \mathbf{p}}{2m} + \frac{q^2 \mathbf{A}^2}{2m} + qV$$
$$\mathcal{H} = \frac{(\mathbf{p} - q\mathbf{A})^2}{2m} + qV$$

b) The Hamilton equations will be

$$\frac{\partial \mathcal{H}}{\partial p_i} = \dot{r}_i = \frac{p_i - qA_i}{m}$$
$$-\frac{\partial \mathcal{H}}{\partial r_i} = \dot{p}_i = \frac{q}{m}(p_j - qA_j)\partial_i A_j - q\partial_i V$$

We can plug the first equation into the second equation.

$$\dot{p}_i = q\dot{r}_j\partial_i A_j - q\partial_i V = qv_j\partial_i A_j - q\partial_i V$$

Let's multiply the first Hamilton equation by m and differentiate it in respect to time.

$$m\ddot{r}_i = \dot{p}_i - q\dot{A}_i$$

We can plug in what we found for \dot{p} into this equation to get

$$m\ddot{r}_{i} = qv_{j}\partial_{i}A_{j} - q\partial_{i}V - qA_{i}$$
$$= qv_{j}\partial_{i}A_{j} - q\partial_{i} - q\left(\frac{\partial A_{i}}{\partial t} + v_{j}\partial_{j}A_{i}\right)$$
$$= q(v_{j}\partial_{i}A_{j} - v_{j}\partial_{j}A_{i}) + q\left(-\partial_{i}V - \frac{\partial A_{i}}{\partial t}\right)$$

This last piece is

$$-\partial_i V - \frac{\partial A_i}{\partial t} = E_i$$

Let's find out what $\boldsymbol{v} \times \boldsymbol{B}$ looks like.

$$\boldsymbol{v} \times \boldsymbol{B} = \boldsymbol{v} \times (\boldsymbol{\nabla} \times \boldsymbol{A})$$
$$= \epsilon_{ijk} v_j (\boldsymbol{\nabla} \times \boldsymbol{A})_k = \epsilon_{ijk} v_j \epsilon_{klm} \partial_l A_m$$
$$= \epsilon_{ijk} \epsilon_{lmk} v_j \partial_l A_m = (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) v_j \partial_l A_m$$
$$= v_j \partial_i A_j - v_j \partial_j A_i$$

Which, luckily, is exactly what we are looking for. So, we end up with the Lorentz force

$$m\ddot{\boldsymbol{r}} = q(\boldsymbol{v} \times \boldsymbol{B} + \boldsymbol{E})$$

Problem 4

(Taylor 13.25) Here is another example of a canonical transformation, which is still to simple to be of any real use, but does nevertheless illustrate the power of these changes of coordinates.

a) Consider a system with one degree of freedom and Hamiltonian $\mathcal{H} = \mathcal{H}(q, p)$ and a new pair of coordinates Q and P defined so that

$$q = \sqrt{2P}\sin(Q), \quad p = \sqrt{2P}\cos(Q)$$

Prove that if $\partial \mathcal{H}/\partial q = -\dot{p}$ and $\partial \mathcal{H}/\partial p = \dot{q}$, it automatically follows that $\partial \mathcal{H}/\partial Q = -\dot{P}$ and $\partial \mathcal{H}/\partial P = \dot{Q}$. In other words, the Hamiltonian formalism applies just as well to the new coordinates as to the old.

b) Show that the Hamiltonian of a one-dimensional harmonic oscillator with mass m = 1 and force constant k = 1 is $\mathcal{H} = \frac{1}{2}(q^2 + p^2)$.

c) Show that if you rewrite this Hamiltonian in terms of the coordinates Q and P defined in (13.62), then Q is ignorable. [The change of coordinates (13.62) was cunningly chosen to produce this elegant result.] What is P?

d) Solve the Hamiltonian equation for Q(t) and verify that, when rewritten for q, your solution gives the expected behavior.

Solution

a) Let's start by differentiating the Hamiltonian in respect to Q.

$$\frac{\partial \mathcal{H}}{\partial Q} = \frac{\partial \mathcal{H}}{\partial q} \frac{\partial q}{\partial Q} + \frac{\partial \mathcal{H}}{\partial p} \frac{\partial p}{\partial Q} = -\dot{P}$$
$$= -\frac{\partial P}{\partial q} \frac{\partial q}{\partial t} - \frac{\partial P}{\partial p} \frac{\partial p}{\partial t} = \frac{\partial P}{\partial p} \frac{\partial \mathcal{H}}{\partial q} - \frac{\partial P}{\partial q} \frac{\partial \mathcal{H}}{\partial p}$$

This gives us the equalities

$$\frac{\partial P}{\partial p} = \frac{\partial q}{\partial Q}, \quad \frac{\partial p}{\partial Q} = -\frac{\partial P}{\partial q}$$

We can do the same thing with the Hamiltonian but in respect to P.

$$\frac{\partial \mathcal{H}}{\partial P} = \frac{\partial \mathcal{H}}{\partial q} \frac{\partial q}{\partial P} + \frac{\partial \mathcal{H}}{\partial p} \frac{\partial p}{\partial P} = \dot{Q}$$
$$= \frac{\partial Q}{\partial q} \frac{\partial q}{\partial t} + \frac{\partial Q}{\partial p} \frac{\partial p}{\partial t} = \frac{\partial Q}{\partial q} \frac{\partial \mathcal{H}}{\partial p} - \frac{\partial Q}{\partial p} \frac{\partial \mathcal{H}}{\partial q}$$

This gives us the equalities

$$\frac{\partial p}{\partial P} = \frac{\partial Q}{\partial q}, \quad \frac{\partial q}{\partial P} = -\frac{\partial Q}{\partial p}$$

which agrees with the previous found equalities. Now we need to find some of our partial derivatives

$$\frac{\partial q}{\partial P} = \frac{1}{\sqrt{2P}}\sin(Q) = \frac{q}{2P}$$
$$\frac{\partial q}{\partial Q} = \sqrt{2P}\cos(Q) = p$$

$$\frac{\partial p}{\partial P} = \frac{1}{\sqrt{2P}}\cos(Q) = \frac{p}{2P}$$
$$\frac{\partial p}{\partial Q} = -\sqrt{2P}\sin(Q) = -q$$

We can use a couple tricks to find Q and P in terms of q and p.

$$q^{2} + p^{2} = 2P$$
$$P = \frac{1}{2}(q^{2} + p^{2})$$
$$\frac{q}{p} = \tan(Q)$$
$$Q = \arctan\left(\frac{q}{p}\right)$$

We can then differentiate these new equations and find

$$\frac{\partial P}{\partial p} = p$$
$$\frac{\partial P}{\partial q} = q$$
$$\frac{\partial Q}{\partial p} = -\frac{q}{p^2 + q^2} = -\frac{q}{2P}$$
$$\frac{\partial Q}{\partial q} = \frac{p}{q^2 + p^2} = \frac{p}{2P}$$

These partial derivatives satisfy the equalities that we found earlier, so the Hamiltonian formalism applies to the new coordinates as well as the old coordinates.

b) The kinetic energy is

$$T = \frac{p^2}{2m} = \frac{p^2}{2}$$

and the potential energy is

$$U = \frac{kq^2}{2} = \frac{q^2}{2}$$

which means the Hamiltonian is

$$\mathcal{H} = \frac{1}{2}(q^2 + p^2)$$

c) If we rewrite this Hamiltonian with our new coordinates, we have

$$\mathcal{H} = \frac{1}{2}(2P\sin^2(Q) + 2P\cos^2(Q)) = P$$

Since the Hamiltonian is only dependent on P and not Q, Q is ignorable.

d) We can start off by finding the Hamilton equations.

$$\frac{\partial \mathcal{H}}{\partial P} = 1 = \dot{Q}$$
$$\frac{\mathcal{H}}{\partial Q} = 0 = -\dot{P}$$

These gives us

Q = t + C

Plugging this into our original equations gives us

$$q = \sqrt{2P}\sin(t+C)$$
$$p = \sqrt{2P}\cos(t+C)$$

which shows the oscillatory behavior we expect.

Problem 5

(Taylor 13.35) A beam of particles is moving along an accelerator pipe in the z direction. The particles are uniformly distributed in a cylindrical volume of length L_0 (in the z direction) and radius R_0 . The particles have momenta uniformly distributed with p_z in an interval $p_0 \pm \Delta p_z$ and the transverse momentum p_{\perp} inside a circle of radius Δp_{\perp} . To increase the particles' spatial density, the beam is focused by electric and magnetic fields, so that the radius shrinks to a smaller value R. What does Liouville's theorem tell you about the spread in the transverse momentum p_{\perp} and the subsequent behavior of the radius R? (Assume that the focusing does not affect either L_0 or Δp_z .)

Solution

Liouville's theorem says that the volume of a system in phase space remains constant. The volume before the beam is focused is

$$V = \pi L_0 R_0^2 \Delta p_z \Delta p_{\perp 0}^2$$

The volume after the beam is focused is

$$V = \pi L_0 R_1^2 \Delta p_z \Delta p_{\perp 1}^2$$

Equating these two equations gives us

$$\frac{R_1^2}{R_0^2} = \frac{\Delta p_{\perp 0}^2}{\Delta p_{\perp 1}^2}$$

or

$$\frac{R_1}{R_0} = \frac{\Delta p_{\perp 0}}{\Delta p_{\perp 1}}$$

This means that if we focus the beam into a smaller radius, the transverse momentum spread increases.

Problem 6: Poisson Bracket

Recall the Poisson bracket of a two functions $F(q_i, p_i)$ and $G(q_i, p_i)$ is defined to be

$$\{F,G\} = \frac{\partial F}{\partial q_i} \frac{\partial G}{\partial p_i} - \frac{\partial F}{\partial p_i} \frac{\partial G}{\partial q_i}$$

summing over i.

a) Suppose that q_i is ignorable, then $\{p_i, H\} = 0$.

b) If two quantities R and S are constants of motion, use the Jacobi identity

$$\{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0$$

to show that $\{R, S\}$ is also a constant of motion.

c) Let L be an angular momentum with three components L_1 , L_2 and L_3 . Show that if L_1 and L_2 are conserved, then L_3 is also conserved. Also, show that L^2 and any component of L are Poisson commute. Here, L^2 is $L \cdot L$.

Solution

b)

$$\{H, \{R, S\}\} + \{R, \{S, H\}\} + \{S, \{H, R\}\} = 0$$
$$= -\{\{R, S\}, H\} + \{S, -\{R, H\}\} = 0$$
$$= -\{\{R, S\}, H\} = \{\{R, S\}, H\} = 0$$

So, if R and S are constants of motion, $\{R, S\}$ is also a constant of motion.

c) We can put L_1 and L_2 into Poisson brackets and see what happens.

$$\{L_1, L_2\} = \frac{\partial L_1}{\partial \boldsymbol{r}} \frac{\partial L_2}{\partial \boldsymbol{p}} - \frac{\partial L_1}{\partial \boldsymbol{p}} \frac{\partial L_2}{\boldsymbol{r}} = r_1 p_2 - r_2 p_1 = L_3$$

Which means if both L_1 and L_2 are conserved, so is L_3 . We can do something similar for L^2 .

$$\{L^2, L_1\} = \{L_1^2 + L_2^2 + L_3^2, L_1\}$$
$$= \{L_1^2, L_1\} + \{L_2^2, L_1\} + \{L_3^2\}$$
$$= 2L_1\{L_1, L_1\} + 2L_2\{L_2, L_1\} + 2L_3\{L_3, L_1\}$$
$$= -2L_2L_3 + 2L_2L_3 = 0$$

We can do the same thing for each component of angular momentum with the same result. The only difference will be which term is zero, negative or positive. This means that L^2 Poisson commutes with each component of momentum.