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Problem 1

(Taylor 13.6) In discussing the oscillation of a cart on the end of a spring, we
almost always ignore the mass of the spring. Set up the Hamiltonian H for a cart
of mass m on a spring (force constant k) whose mass M is not negligible, using
the extension x of the spring as the generalized coordinate. Solve Hamilton’s
equations and show that the mass oscillates with the angular frequency ω =√
k/(m+M/3). That is, the effect of the spring’s mass is to add M/3 to m.

(Assume that the spring’s mass is distributed uniformly and that it stretches
uniformly.)

Solution

The kinetic energy will get an extra term

Tspr =
1

2

∫ L

0

u2dM

with u = ẋx
L

. Each mass element is

dM =
Mdx

L

which makes this integral

Tspr =
Mẋ2

2L2

∫ L

0

x2dx =
Mẋ2

6

This gives a total kinetic energy of

T =
1

2

(
m+

M

3

)
ẋ2
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The potential energy is

U =
1

2
kx2

The Lagrangian for this system is then

L =
1

2

(
m+

M

3

)
ẋ2 − 1

2
kx2

The generalized momentum will then be

∂L
∂ẋ

=
(
m+

M

3

)
ẋ = p

The Hamiltonian for this system is then

H = pẋ− 1

2
pẋ+

1

2
kx2 =

p2

2(m+ M
3

)
+

1

2
kx2

The Hamilton equations will then be

−∂H
∂x

= −kx = ṗ

∂H
∂p

=
p

m+ M
3

= ẋ

Combing these together gives us (
m+

M

3

)
ẍ = −kx

which has solutions of the form

x = A cos(ωt− δ) +B sin(ωt− δ)

with

ω =

√
k

m+ M
3

Problem 2

(Taylor 13.17) Consider the mass confined to the surface of a cone described in
Example 13.4 (page 533). We saw that there are solutions for which the mass
remains at the fixed height z = z0, with fixed angular velocity φ̇0 say.
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a) For any chosen value of pφ, use (13.34) to get an equation that gives the
corresponding value of the height z0.

b) Use the equations of motion to show that this motion is stable. That is,
show that if the orbit has z = z0 + ε with ε small, then ε will oscillate about zero.

c) Show that the angular frequency of these oscillations is ω =
√

3φ̇0 sin(α),
where α is the half angle of the cone (tan(α) = c where c is the constant in
ρ = cz).

d) Find the angle α for which the frequency of oscillation ω is equal to the
orbital angular velocity φ̇0, and describe the motion for this case.

Solution

a) The equations given by 13.34 are

ż =
∂H
∂pz

=
pz

m(c2 + 1)

ṗz = −∂H
∂z

=
p2φ

mc2z3
−mg

Which can be used to make the equation of motion

m(c2 + 1)z̈ =
p2φ

mc2z3
−mg = 0

All we need to do is solve for z
1

z3
=
m2gc2

p2φ

z0 =
3

√
p2φ

m2gc2

b) The equations of motion are

m(c2 + 1)z̈ =
p2φ

mc2z3
−mg

We can then use variation of parameters to get

m(c2 + 1)ε̈ =
p2φ

mc2(z0 + ε)3
−mg

=
p2φ

mc2z30

1

(1 + ε
z0

)3
−mg
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Using a Taylor expansion and ignoring all but the first two terms gives

m(c2 + 1)ε̈ = mg
(

1− 3ε

z0

)
−mg

= −3mgε

z0

ε̈ = − 3g

z0(c2 + 1)
ε

This oscillation is stable.
c) We can solve for z0 replacing pφ with mc2z20φ̇ which gives us

z0 =
3

√
m2c4z20φ̇

2
0

m2c2g
= z0

3

√
c2z0φ̇2

0

g

g = c2z0φ̇
2
0

z0 =
g

c2φ̇2
0

This gives us the frequency

ω =

√
3g

z0(c2 + 1)
=

√
3c2φ̇2

0

c2 + 1
=
√

3φ̇0 sin(α)

d) The angle α will have to be

α = arcsin

(
1√
3

)
≈ 35.26◦

In this case, the path of the mass is a closed orbit and that there is only one unique position
per given φ.

Problem 3

(Taylor 13.18) All of the examples in this chapter and all of the problems (except
this one) treat forces that come from a potential energy U(r) [or occasionally
U(r, t)]. However, the proof of Hamilton’s equations given in Section 13.3 applies
to any system for which Lagrange’s equations hold, and this can include forces
not derivable from a potential energy. An important example of such a force is
the magnetic force on a charged particle.
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a) Use the Lagrangian (7.103) to show that the Hamiltonian for a charge q in
an electromagnetic field is

H =
(p− qA)2

2m
+ qV

(This Hamiltonian plays an important role in the quantum mechanics of charged
particles.)

b) Show that Hamilton’s equations are equivalent to the familiar Lorentz force
equation mr̈ = q(E + v×B).

Solution

a) The Lagrangian is

L =
1

2
mṙ2 − q(V − ṙ ·A)

The generalized momentum will be

∂L
∂ṙ

= mṙ + qA = p

and

ṙ =
p− qA
m

We can then express the Hamiltonian as

H = p · ṙ − L

H = p · q − m

2

(p2 − 2qA · p + q2A2

m2

)
+ qV − q

(p ·A− 1A2

m

)
=

p2 − qA · p
m

− p2 − 2qA · p + q2A2

2m
+ qV − q

(p ·A− qA2

m

)
=

p2 − 2qA · p
2m

+
q2A2

2m
+ qV

H =
(p− qA)2

2m
+ qV

b) The Hamilton equations will be

∂H
∂pi

= ṙi =
pi − qAi

m

−∂H
∂ri

= ṗi =
q

m
(pj − qAj)∂iAj − q∂iV
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We can plug the first equation into the second equation.

ṗi = qṙj∂iAj − q∂iV = qvj∂iAj − q∂iV

Let’s multiply the first Hamilton equation by m and differentiate it in respect to time.

mr̈i = ṗi − qȦi

We can plug in what we found for ṗ into this equation to get

mr̈i = qvj∂iAj − q∂iV − qȦi

= qvj∂iAj − q∂i − q
(∂Ai
∂t

+ vj∂jAi

)
= q(vj∂iAj − vj∂jAi) + q

(
− ∂iV −

∂Ai
∂t

)
This last piece is

−∂iV −
∂Ai
∂t

= Ei

Let’s find out what v×B looks like.

v×B = v× (∇×A)

= εijkvj(∇×A)k = εijkvjεklm∂lAm

= εijkεlmkvj∂lAm = (δilδjm − δimδjl)vj∂lAm
= vj∂iAj − vj∂jAi

Which, luckily, is exactly what we are looking for. So, we end up with the Lorentz force

mr̈ = q(v×B + E)

Problem 4

(Taylor 13.25) Here is another example of a canonical transformation, which is
still to simple to be of any real use, but does nevertheless illustrate the power
of these changes of coordinates.

a) Consider a system with one degree of freedom and Hamiltonian H = H(q, p)
and a new pair of coordinates Q and P defined so that

q =
√

2P sin(Q), p =
√

2P cos(Q)
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Prove that if ∂H/∂q = −ṗ and ∂H/∂p = q̇, it automatically follows that ∂H/∂Q =
−Ṗ and ∂H/∂P = Q̇. In other words, the Hamiltonian formalism applies just as
well to the new coordinates as to the old.

b) Show that the Hamiltonian of a one-dimensional harmonic oscillator with
mass m = 1 and force constant k = 1 is H = 1

2
(q2 + p2).

c) Show that if you rewrite this Hamiltonian in terms of the coordinates Q
and P defined in (13.62), then Q is ignorable. [The change of coordinates (13.62)
was cunningly chosen to produce this elegant result.] What is P?

d) Solve the Hamiltonian equation for Q(t) and verify that, when rewritten
for q, your solution gives the expected behavior.

Solution

a) Let’s start by differentiating the Hamiltonian in respect to Q.

∂H
∂Q

=
∂H
∂q

∂q

∂Q
+
∂H
∂p

∂p

∂Q
= −Ṗ

= −∂P
∂q

∂q

∂t
− ∂P

∂p

∂p

∂t
=
∂P

∂p

∂H
∂q
− ∂P

∂q

∂H
∂p

This gives us the equalities
∂P

∂p
=

∂q

∂Q
,

∂p

∂Q
= −∂P

∂q

We can do the same thing with the Hamiltonian but in respect to P .

∂H
∂P

=
∂H
∂q

∂q

∂P
+
∂H
∂p

∂p

∂P
= Q̇

=
∂Q

∂q

∂q

∂t
+
∂Q

∂p

∂p

∂t
=
∂Q

∂q

∂H
∂p
− ∂Q

∂p

∂H
∂q

This gives us the equalities
∂p

∂P
=
∂Q

∂q
,

∂q

∂P
= −∂Q

∂p

which agrees with the previous found equalities. Now we need to find some of our partial
derivatives

∂q

∂P
=

1√
2P

sin(Q) =
q

2P

∂q

∂Q
=
√

2P cos(Q) = p
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∂p

∂P
=

1√
2P

cos(Q) =
p

2P

∂p

∂Q
= −
√

2P sin(Q) = −q

We can use a couple tricks to find Q and P in terms of q and p.

q2 + p2 = 2P

P =
1

2
(q2 + p2)

q

p
= tan(Q)

Q = arctan

(
q

p

)
We can then differentiate these new equations and find

∂P

∂p
= p

∂P

∂q
= q

∂Q

∂p
= − q

p2 + q2
= − q

2P

∂Q

∂q
=

p

q2 + p2
=

p

2P

These partial derivatives satisfy the equalities that we found earlier, so the Hamiltonian
formalism applies to the new coordinates as well as the old coordinates.

b) The kinetic energy is

T =
p2

2m
=
p2

2

and the potential energy is

U =
kq2

2
=
q2

2

which means the Hamiltonian is

H =
1

2
(q2 + p2)

c) If we rewrite this Hamiltonian with our new coordinates, we have

H =
1

2
(2P sin2(Q) + 2P cos2(Q) = P
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Since the Hamiltonian is only dependent on P and not Q, Q is ignorable.
d) We can start off by finding the Hamilton equations.

∂H
∂P

= 1 = Q̇

H
∂Q

= 0 = −Ṗ

These gives us
Q = t+ C

Plugging this into our original equations gives us

q =
√

2P sin(t+ C)

p =
√

2P cos(t+ C)

which shows the oscillatory behavior we expect.

Problem 5

(Taylor 13.35) A beam of particles is moving along an accelerator pipe in the
z direction. The particles are uniformly distributed in a cylindrical volume
of length L0 (in the z direction) and radius R0. The particles have momenta
uniformly distributed with pz in an interval p0±∆pz and the transverse momentum
p⊥ inside a circle of radius ∆p⊥. To increase the particles’ spatial density, the
beam is focused by electric and magnetic fields, so that the radius shrinks to a
smaller value R. What does Liouville’s theorem tell you about the spread in the
transverse momentum p⊥ and the subsequent behavior of the radius R? (Assume
that the focusing does not affect either L0 or ∆pz.)

Solution

Liouville’s theorem says that the volume of a system in phase space remains constant. The
volume before the beam is focused is

V = πL0R
2
0∆pz∆p

2
⊥0

The volume after the beam is focused is

V = πL0R
2
1∆pz∆p

2
⊥1
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Equating these two equations gives us

R2
1

R2
0

=
∆p2⊥0
∆p2⊥1

or
R1

R0

=
∆p⊥0
∆p⊥1

This means that if we focus the beam into a smaller radius, the transverse momentum spread
increases.

Problem 6: Poisson Bracket

Recall the Poisson bracket of a two functions F (qi, pi) and G(qi, pi) is defined to
be

{F,G} =
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

summing over i.
a) Suppose that qi is ignorable, then {pi, H} = 0.
b) If two quantities R and S are constants of motion, use the Jacobi identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

to show that {R, S} is also a constant of motion.
c) Let L be an angular momentum with three components L1, L2 and L3.

Show that if L1 and L2 are conserved, then L3 is also conserved. Also, show that
L2 and any component of L are Poisson commute. Here, L2 is L ·L.

Solution

b)
{H, {R, S}}+ {R, {S,H}}+ {S, {H,R}} = 0

= −{{R, S}, H}+ {S,−{R,H}} = 0

= −{{R, S}, H} = {{R, S}, H} = 0

So, if R and S are constants of motion, {R, S} is also a constant of motion.
c) We can put L1 and L2 into Poisson brackets and see what happens.

{L1, L2} =
∂L1

∂r

∂L2

∂p
− ∂L1

∂p

∂L2

r
= r1p2 − r2p1 = L3
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Which means if both L1 and L2 are conserved, so is L3. We can do something similar for
L2.

{L2, L1} = {L2
1 + L2

2 + L2
3, L1}

= {L2
1, L1}+ {L2

2, L1}+ {L2
3}

= 2L1{L1, L1}+ 2L2{L2, L1}+ 2L3{L3, L1}

= −2L2L3 + 2L2L3 = 0

We can do the same thing for each component of angular momentum with the same result.
The only difference will be which term is zero, negative or positive. This means that L2

Poisson commutes with each component of momentum.
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