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Two Masses and Three Springs

Let’s look at a coupled system consisting of two carts of mass m; and ms. respectively, next
to each other on some plane each attached to their respective walls with a spring of force
constant k; and ks,respectively, and attached to each other with a spring of force constant
ko. We can say that these carts are coupled in that the motion of one affects the motion of
the other. The net force on cart 1 is

mlji'l = —klilfl + kz(CCQ — .1'1) = —(lﬁ -+ kg)l‘l + kzﬂ?g

and on cart 2 is
m2i’2 = ]{321’1 — (]{72 + k?g)ZL'Q =

This can be converted into the matrix form

Mz =—-Kx
where M is the "mass matrix” and K is the "spring-constant” matrix and in this case
M — |:m1 0 :|
0 mo
ki 4+ ky  —ko
K —
{ —ko ko + ks

The solutions to this equation will be of the form
x;(t) = «a; cos(wt — 0;)
yi(t) = a; sin(wt — 0;)

We can use the trick we learned earlier to extend our solution into the complex plane, which
is a lot easier to work with. This will give us

[zl(t)} B [:rl(t) +iy1(t)} B [aleiw—m]

25(t) xo(t) + iy2(t) (petwt=02)
—101 ,iwt
_ |oae € e wt et
= |:a26—i62eiwt:| = LLJ e =ac

~i1 Plugging this into our matrix equation gives

—w’Mae*t = —Kae™!

with a; = aze

or
(K —w*M)a =0

Which is an eigenvalue equation. The eigenvalues of the determinant of the term in the

parentheses are normal frequencies.



Identical Springs and Equal Masses

We will look at this system with each spring having the same force constant k£ and the same
mass m. The mass and spring matrices will then be

m 0 2k —k
M:[o m}’ K:{—k 21{}

The matrix we will look at to find the eigenvalues will be

2k — mw? —k ]
2

2 _
(K_WM)_{ —k 2k — mw

The determinant is then

2k — mw? —k

e o o) = 2k —mw?)? — k= (k — mw?)(3k — mw?) = 0

o= (3 2)

All that we need to do now is find the eigenvectors for each eigenvalue and we will have our
normal modes.

which yields the eigenvalues

The First Normal Mode

The first normal mode will have eigenvalue w; = /k/m. This gives us an eigenmatrix of

o -utan = | K7

This gives us
This gives us the eigenvector

This is equivalent to the carts oscillating together with the same phase, frequency and
amplitude. The middle spring never changes length and the carts act as if there is only one
cart and one spring. The equations of motion will be

] - s



The Second Normal Mode

The second normal mode is the mode with eigenvalue wy = /3k/m. The eigenmatrix is
then

(K -h) = T Ty

—k —k
11 al_ i
b [ =

. 1|1

s
This is equivalent to the carts oscillating with the same frequency and amplitude but opposite
directions. The equations of motion will be

] Ao

This gives us

This gives us the eigenvector

The General Solution

The general solution in this new basis will be a superposition of our normal modes.
1 1
z(t) = A 1 cos(wit — 1) + Ay 1 cos(wat — dg)

We can define new coordinates &;, & in this new coordinate system with

& = %(xl +x9), &= %(fﬁl — X3)

The first and second normal modes in this new coordinate system will be, respectively,

o [ [

&= [e0)] = Lacosont - 5)



The Lagrangian Method

The equations of motion can also be found using the Lagrangian method. The kinetic energy

18
1 1

and the potential energy is

1 1 1
U= ék’l.’ﬂ% + 5]?2(.1’1 — 33'2)2 + 5]?3.1’%

1 1
= 5(/{31 + k?g)ll’% - l{?Ql’lZEQ + 5(1{?2 + k?g)[tg
This leads to the two Lagrange equations
mlfél = —(k‘l + kz)l’l + k2$2

mgjg = k’QIl — (kg + /Cg)l’g

Two Weakly Coupled Oscillators

We are still dealing with the same two cart, 3 spring system, except the second spring has a
force constant much smaller than the others ks < k. The new spring matrix is then

k+ ko —kg}

K= [ “ky kit ky

And the eigenmatrix is then

k + ky — mw? —k
9 _ 2 2
(K —w'M) [ —ko k+ky — me}

This matrix has determinant

k+ ky — mw? —ky

ey bt by mw?| = (k — mw?)(k + 2ky — mw?)

Which gives us the eigenvalues

(o, wg) = (\/g /k+m2k:2)

Since these frequencies are very close to each other we can define a new frequency which is
the average of the two.

w1 —l—WQ
Wy = 5




We can then say that
Wi =Wy —€ Wy =wy+E€

Using this we have a general solution of
1 i(wo—€) 1 i(wote€)t
z(t) = C "0 + Oy R 0

Over a short time interval, this oscillates relative to e®* since € is so small. Over time, the

motion of the carts will deviate from this behavior since € # 0. In a maximally mixed state
Cy = Cy = A/2. The equations of motion become

A [emiet 4 eiet] cos(€t) | ot
z(t) = 5 [e“t _ eiet‘| et =A —isin(et) ‘

The real part of this function is

[xl(t)} _ 4 {cos(et) cos(wot)]

To(t)

The Double Pendulum

Let’s consider a double pendulum with a mass m; being suspended by a massless rigid rod
of length L, from a fixed pivot. The second mass ms is supsended by a massless rigid rod of
length Ly from my. The potential energy of m; is

Up = migLi(1 — cos(¢1))
The potential energy of ms is
U = mag(Ly1(1 — cos(¢1)) + La(1 — cos(¢2)))
The total potential energy is then
U= (my+ma)gLi(1 —cos(¢r)) + magLlo(1 — cos(¢ps))

The kinetic energy of m; is
1 :
T = émllgdﬁ

The kinetic energy of my is

T, = §m2([€¢§ +2L1 Loz cos(¢r — ¢2) + L5¢93)



The total kinetic energy is then

1 . o 1
—(my + mg)Li¢7 + moLy Lag o cos(d1 — ¢o) + mzL ¢2

T =3(

We are going to use the small angle approximation to reduce this problem to something that
is solvable. The kinetic term then reduces to

1 1
T= §(m1 +ma) LiGT + maLi Lo o + m2L 05

The potential term is reduced to

1 1
U= §(m1 + ma)gL17 + §ngL2¢§

The Lagrange equations are then
(m1 +mo)Lig1 + maLiLady = —(my + mo)gLign

maLy Lagy + mﬂ/%éz = —magLogs

This can be put into our matrix equation form

M¢=-K¢

with

M — (my +my)L? mngLQ} K- {(ml +mao)gLy 0
moLq Lo mol3 |’ 0 Mag Lo
The mass matrix plays the role of inertia and the spring matrix plays a similar role to that of
a matrix of spring constants. The solutions will be in the same form as the previous system
with
@(t) = Rez(t)

where

Z(t) _ aeiwt — |:CL1:| eiwt
a2

Equal Lengths and Masses

The masses are equal so m; = my = m and the lengths are equal and are L; = L, = L and
we have natural frequency wy = /¢/L. Our mass and spring matrices are then

. 22]. . 220&)(2) 0
M—mLLl, K =mL 0 wg
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The eigenmatrix is then

2(w? — w?) —w?
2 _ 72 0
(K —w”M) =mL D2 (wf — w?)

This yields
2(wi — w?)? —wt = wt — dwiw® + 2w =0

This gives the eigenvalues

wi=(2-V2wp, w=(2- V2w

The first mode eigenmatrix will be
(K —w?M) = mL*2(V2 - 1) {

Which yields the eigenvector

R 1 |1
€, =—
V] [ﬁ]
which is equivalent to both pendulums oscillating in phase, but the amplitude of the lower
pendulum is higher. The equation of motion is then

- 1
¢(t) = Reae™" = A, [\/5] cos(wit — 61)
The second mode will have an eigenmatrix

(K — M) = —mt2iVE ) | 7 ]

which yields the eigenvector

. 1 { 1 ]
€y = —
VB V2
which is equivalent to the pendulums oscillation completely out of phase with each other
and the bottom pendulum having a larger amplitude. The equation of motion is then

o(t) = Reaec™?' = A, {—i/i} cos(wat — d7)



The General Case

Using generalized coordinates g with Cartesian coordinates r,, we can generalize normal
modes to a system with n degrees of freedom. The kinetic energy is then described as

T = T q q ZAjk QquJ

With small oscillations around a stable equilibrium set to g, then only small oscillations
concern us. We can the Taylor expand the potential energy and ignore the terms we don’t
like that are of third order or higher.

The first term can be set to zero and at the equilibrium point the second term is zero, so
1
=3 Z Kk
j7k
with
0*U
04;0qx

The kinetic energy can be simplified by ignoring all terms except the constant term since
¢;qr is a second order small quantity. This yields

Z kQJ Qk

The Lagrangian is then

L(q,q) =T(¢) - U(q)
Since the kinetic energy is now dependent only on the generalized velocity and the potential
energy is only dependent on the generalized position, the equations of motion will be solvable

linear equations.
We can find the equations of motion using

doc_oc
dt 04, dg;’

For a simpler system with two degrees of freedom yield a potential energy of

Z kLK = K11q1 + 2K12q1G2 + K92G3)
],k: 1



The derivatives will be

oU

EP = Knq + Ki2¢2
q1

oU

Jon = Kaoqo + Kioqi
q2

which can be generalized to

ou ,
aq :ZKijq]‘, [’L:]_,...,TL]
R

The kinetic energy works in the same way so the Lagrange equations become
ZMiij:—ZKZ‘ij, [Z:]_,,TL]
J J
or in matrix form

The solutions will be in the form
q(t) = Rez(t), with  z(t) = ae™*

The eigenvalue equation is
(K —w’M)a =0

with solutions iff w satisfies the characteristic equation.

det(K —w*M) =0

Example: A Bead on a Wire

A bead of mass m is threaded on a frictionless wire in the xy plane that is bent in the shape
of y = f(x) with a minimum at the origin. The potential energy is then

1 ,
U =mgy =mgf(x) ~ 5mgf’ (0)a”

The kinetic energy is

1 1 1
T = §m(§c2 +9%) = 71+ fl(x)?)i? ~ §m3'c2
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Three Coupled Pendulums

We have three pendulums connected by two springs. The generalized coordinates that will
be used will be the angles each pendulum makes ¢1, @2, 3. We can write down the small
angle approximations directly without finding the exact expressions for the energy. The
kinetic energy will be

T= %mﬁ(db? + 03+ 63)

The gravitational potential energy will be

1
Ugra'u = §mgL<¢§ + Q% + (bg)

The spring potential energy can be approximated to be

Upr = GhL2 (62— 1) + (65 — 62))

= %kLQ(qﬁ + 203 + 3 — 20103 — 2¢203)

We can switch over to natural units and make annoying constants disappear. We can bring
them back later with dimensional analysis. So, let’s choose m = L = 1. The kinetic energy
is then

1 . . .
T = §(¢% + @9 + ¢3)
and the potential energy is

1
U = 5061+ 63+ BR) + Sh(6} + 263 + 6 — 29105 — 26205)

We can use our matrix equation with

1 00 g+k —k 0
M=|010, K=| -k g+2t -k
0 01 0 -k g+k
The eigenmatrix is then
g+k—w? —k 0
(K —w*M) = —k g+ 2k — w? —k
0 —k g+k—w?

With the eigen-equation being
(g—w)(g+k—w)g+3k—w?)=0
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This gives the eigenvalues
(wi, w3, w3) = (9,9 + k, g + 3k)

The first mode will yield an eigenvector of

Which is equivalent to all of the pendulums oscillating together with the same amplitude
and same phase and aks like a single pendulum. The second mode will have an eigenvector

O =

which is equivalent to the outside penulums oscillating with equal amplitude but opposite
phase and the middle pendulum is not moving. The third mode will have an eigenvector

which is equivalently the outside pendulums oscillating together with the same phase and
amplitude while the middle pendulum is oscillating with twice the amplitude and opposite
phase of the other pendulums.
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