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Problem 1: Orthonormality of Eigenvectors

Let {ωi, i = 1, . . . , n} and Ai, i = 1, . . . , n be a set of eigenvalues (characteristic
frequencies) and the corresponding eigenvectors such that Aji is the j-th compo-
nents of the eigenvector Ai. This means the r-th eigenvalue ωr and eigenvector
Ar satisfy the condition ∑

j

(Kkj − ω2Mkj)Ajr = 0

where Kkj and Mkj are the matrix elements of the spring constant matrix K and
mass matrix M respectively. Use this condition to show that the eigenvectors
are orthogonal. That is, the product of the components of any eigenvectors Ar

and As fulfills ∑
j,k

MkjAjrAks = 0

r 6= s

By subjecting the components of the eigenvector Ar to the requirement∑
j,k

MkjAjrAkr = 1

Ar is then normalized.

Solution

We can start by moving the mass matrix term to the RHS.∑
j

KkjAjr =
∑
j

ω2
1MkjAjr
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We can multiply everything by a term from a vector with a different eigenvalue.∑
j,k

KkjAksAjr =
∑
j,k

ω2
1MkjAksAkr

We can also set this up by switching the roles of the initial and secondary vector.∑
j,k

KkjAjrAks =
∑
j,k

ω2
sMkjAjrAks

Subtracting these two terms gives us∑
j,k

(ω2
r − ω2

s)MkjAjrAks = 0

If r 6= s, the eigenvalue term is nonzero which means that∑
j,k

MkjAjrAks = 0

This means that the eigenvectors of different eigenvalues are orthogonal to each other. This
isn’t necessarily true if there are any degeneracies, but you can always find orthogonal
eigenvectors to map that degenerate space.

Problem 2

(Taylor 11.11) a) Write down the equations of motion corresponding to (11.2)
for the equal-mass carts of section 11.2 with three identical springs, but with
each cart subject to a linear resistive force −bv (same coefficient b for both carts)
and with a driving force F (t) = F0 cos(ωt) applied to cart 1.

b) Show that if you change variables to the normal coordinates ξ1 = 1
2
(x1 + x2)

and ξ2 = 1
2
(x1 − x2), the equations of motion for ξ1 and ξ2 are uncoupled.

c) Using the methods of section 5.5, write down the general solutions.
d) Assuming that β = b/2m� ω0, show that ξ1 resonates when ω ≈ ω0 =

√
k/m

and likewise ξ2 when ω ≈
√

3ω0.
e) Prove, on the other hand, that if both carts are driven in phase with the

same force F0 cos(ωt), only ξ1 shows a resonance. Explain.

Solution

a) The equations of motion will be

mẍ1 = −2kx1 + kx2 − bẋ1 + F0 cos(ωt)
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mẍ2 = kx1 − 2kx2 − bẋ2
b) By adding the two equations together and dividing by two, we get

1

2
m(ẍ1 + ẍ2) =

1

2
(−kx1 − k2 − bẋ1 − bẋ2 + F0 cos(ωt))

ξ̈1 +
b

m
ξ̇1 +

k

m
ξ1 =

F0

2m
cos(ωt)

We get something similar when we subtract equation 2 from equation 1 and then divide by
two.

1

2
m(ẍ1 − ẍ2) =

1

2
(−3kx1 + 3kx2 − bẋ1 + bẋ2 + F0 cos(ωt)

ξ̈2 +
b

m
ξ̇2 +

3k

m
ξ2 =

F0

2m
cos(ωt)

As can be seen, these two equations are no longer coupled in this new basis.
c) We are going to let β = b/2m, ω1 =

√
k/m and ω2 =

√
3k/m so our equations can

be rewritten as

ξ̈1 + 2βξ̇1 + ω2
1ξ1 =

F0

2m
cos(ωt)

ξ̈2 + 2βξ̇2 + ω2
2ξ2 =

F0

2m
cos(ωt)

We can start y finding the homogeneous solutions. We have characteristic equations of the
form

r2 + 2βr + ω2
i = 0

with roots being

r = −β ±
√
β2 − ω2

i

This gives us the homogeneous solutions for each equation.

ξ1h = C11e
(−β+
√
β2−ω2

1)t + C12e
(−β−
√
β2−ω2

1)t

ξ2h = C21e
(−β+
√
β2−ω2

2)t + C22e
(−β−
√
β2−ω2

2)t

Next, we want the particular solution. We can solve this for one and it will give us the solution
for both modes. At first, we will extend our problem into a complex equation, because they
are easier to solve, and then the real part will be the physical part. Let A = F0/2m to make
it easier to write and let η be the frequency of a mode.

z̈ + 2βż + η2z = Aeiωt
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We can make a guess that our solution will be of the form

z = Bei(ωt−δ)

Plugging this into our equation gives

−Bω2ei(ωt−δ) + 2βBiωei(ωt−δ) +Bη2ei(ωt−δ) = Aeiωt

Simplifying it further gives us

Be−iδ(η2 + 2βωi− ω2) = A

Be−iδ =
A

η2 + 2βωi− ω2
=
A(η2 − ω2 − 2βωi)

(η2 − ω2)2 + 4β2ω2

We can break this complex exponent into its parts using Euler’s identity which gives us

B cos(δ) =
A(η2 − ω2)

(η2 − ω2)2 + 4β2ω2

B sin(δ) =
2βAω

(η2 − ω2)2 + 4β2ω2

We can use the Pythagorean identity to solve for B.

B2 =
A2((η2 − ω2)2 + 4β2ω2)

((η2 − ω2)2 + 4β2ω2)2

which gives us

B =
A√

(η2 − ω2)2 + 4β2ω2

We can find delta by dividing our trigonometric expressions

tan(δ) =
2βωA

A(η2 − ω2)

δ = arctan

(
2βω

η2 − ω2

)
We only care about the real parts of this so

ξ1p =
F0

2m
√

(ω2
1 − ω2)2 + 4β2ω2

cos

(
ωt− arctan

(
2βω

ω2
1 − ω2

))

ξ2p =
F0

2m
√

(ω2
2 − ω2)2 + 4β2ω2

cos

(
ωt− arctan

(
2βω

ω2
2 − ω2

))
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The generalized solution will just be the sum of the respective parts.

ξ1 = C11e
(−β+
√
β2−ω2

1)t+C12e
(−β−
√
β2−ω2

1)t+
F0

2m
√

(ω2
1 − ω2)2 + 4β2ω2

cos

(
ωt− arctan

(
2βω

ω2
1 − ω2

))

ξ2 = C21e
(−β+
√
β2−ω2

2)t+C22e
(−β−
√
β2−ω2

2)t+
F0

2m
√

(ω2
2 − ω2)2 + 4β2ω2

cos

(
ωt− arctan

(
2βω

ω2
2 − ω2

))
d) To notice the resonance, we want to look at the amplitude of the cosine part in each

equation. The 4β2ω2 piece can be ignored since it will be really small compared to the other
piece in the square roots. This gives us an amplitude of

A =
F0

2m(η2 − ω2)

If we let ω0 = ω1 = ω, the η = ω for the first equation ξ1, and the magnitude will be infinite.
For the second equation ξ2, the magnitude won’t be infinite because η 6= ω2. This shows
that ξ1 resonates with that choice of frequency. On the otherhand, if we let ω =

√
3ω0 = ω2,

η = ω for the second equation ξ2 and the magnitude is infinite, while the first equation ξ1
will not be infinite in magnitude since η 6= ω1. This shows that ξ2 resonates with that choice
of frequency.

e) The new equations of motion will be

mẍ1 = −2kx1 + kx2 − bẋ1 + F0 cos(ωt)

mẍ2 = kx1 − 2kx2 − bẋ2 + F0 cos(ωt)

which can be converted into our normal mode eigenbasis

ξ̈1 + 2βξ̇1 + ω2
1ξ1 =

F0

m
cos(ωt)

ξ̈2 + 2βξ̇2 + ω2
2ξ2 = 0

This means that only ξ1 has a resonance since it is the only one that has a nonhomogeneous
solution. Since both carts are being pushed with the same driving force, there isn’t much
opportunity for them to be pushed out of phase with each other, so over time they will move
together and the difference of their motion, ξ2 = x1 − x2, will decay to zero.

Problem 3

(Taylor 11.12) Here is a different way to couple two oscillators. The two carts
in Figure 11.16 have equal masses m (though different shapes). They are joined
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by identical but separate springs (force constant k) to separate walls. Cart 2
rides in cart 1, as shown, and cart 1 is filled with molasses, whose viscous drag
supplies the couplign between the carts.

a) Assuming that the drag force has magnitude βmv where v is the relative ve-
locity of the two carts, write down the equations of motion of the two carts using
as coordinates x1 and x2, the displacements of the carts from their equilibrium
positions. Show that they can be written in matrix form as ẍ + βDẋ + ω2

0x = 0,
where x is the 2× 1 column made up of x1 and x2, ω0 =

√
k/m, and D is a certain

2 × 2 square matrix.
b) There is nothing to stop you from seeking a solution of the form x(t) =

Rez(t), with z(t) = aert. Show that you do indeed get two solutions of this form
with r = iω0 or r = −β + iω1 where ω1 =

√
ω2
0 − β2. (Assume that the viscous force

is weak, so that β < ω0.)
c) Describe the corresponding motions. Explain why one of these modes is

damped but the other is not.

Solution

a) The equations of motion will be

mẍ1 = −kx1 − βm(ẋ1 − ẋ2)

mẍ2 = −kx2 − βm(ẋ2 − ẋ1)

or
ẍ1 + ω2

0 + β(ẋ1 − ẋ2) = 0

ẍ2 + ω2
0 − β(ẋ1 − ẋ2) = 0

This gives us a matrix D of

D =

[
1 −1
−1 1

]
That satisfies

ẍ + βDẋ + ω2
0x = 0

b) With the choice of solution to be x = Rez with z = aert, our differential equation
becomes

ert(r2I + βrD + ω2
0I)a = 0

The eigenmatrix will then be

((r2 + ω2
0)I + βrD) =

[
r2 + βr + ω2

0 −βr
−βr r2 + βr + ω2

0

]
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which yields the eigenvalue polynomial equation

(r2 + βr + ω2
0)− β2r2 = 0

(r2 + ω2
0)(r2 + 2βr + ω2

0) = 0

(r2 + ω2
0)(r + β − iω1)(r + β + iω1) = 0

This gives us the eigenvalues

(r1, r2, r3, r4) = (iω0,−iω0,−β + iω1,−β − iω1)

We reject the second and fourth values because they are physically the same as the first and
the third values. Looking at the case for r = iω0, we find the eigenvector

ê1 =
1√
2

[
1
1

]
Since the physical part is the real part of this solution, the equation of motion will be

x =

[
A
A

]
cos(ω0t− δ)

For the second mode, we will want to solve that long polynomial r2 + βr + ω0 with our
r = −β + iω1.

β2 − 2βω1i− ω2
1 − β2 + βω1i+ ω2

0

= ω2
0 − ω2

1 − βω1i

= ω2
0 − ω2

0 + β2 − βω1i

= β2 − βω1i

This will yield us an eigenvector

ê2 =
1√
2

[
1
−1

]
The resulting solutions will then be

x = e−βt
[
A
−A

]
cos(ω1t− δ)

c) The first mode corresponds to the carts oscillating together with the same frequency,
amplitude, and phase. The second mode corresponds to the carts oscillating with the same
frequency, amplitude and opposite phase. Since there is a dampening force attributed to the
difference in displacement of the two carts, this second mode has a dampening effect and will
die off eventually. The carts in the first mode stay together, so the difference in positions of
the two remains zero, and the dampening effect never comes into play.

7



Problem 4

(Taylor 11.19) A simple pendulum (mass M and length L) is suspended from a
cart (mass m) that can oscillate on the end of a spring of force constant k, as
shown in Figure 11.18.

a) Assuming that the angle φ remains small, write down the system’s La-
grangian and the equations of motion for x and φ.

b) Assuming that m = M = L = g = 1 and k = 2 ( all in appropriate units)
find the normal frequencies, and for each normal frequency find and describe the
motion of the corresponding normal mode.

Solution

a) The kinetic energy of the system is

T =
1

2
ML2φ̇2 +

1

2
(m+M)ẋ2 +MLẋφ̇ cos(φ)

And the potential energy is

U = mgL(1− cos(φ)) +
1

2
kx2

This gives us the Lagrangian

L =
1

2
ML2φ̇2 +

1

2
(m+M)ẋ2 +MLẋφ̇ cos(φ)−mgL(1− cos(φ))− 1

2
kx2

This yields the two Lagrange equations of motion are

ML2φ̈+MLgẍ cos(φ) +MLg sin(φ) = 0

(m+M)ẍ+MLφ̈ cos(φ)−MLφ̇2 sin(φ) + kx = 0

b) With our given assumptions, the new equations of motion will be

φ̈+ ẍ+ φ = 0

2ẍ+ φ̈+ 2x = 0

We can let our mass and spring matrices be

M =

[
1 1
1 2

]
, K =

[
1 0
0 2

]
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with our vector being

x =

[
φ
x

]
The eigenmatrix will then be

(K − ω2M ) =

[
1− ω2 −ω2

−ω2 2− 2ω2

]
The determinant of this matrix will yield the eigenvalue polynomial

(ω2 − 2−
√

2)(ω2 − 2 +
√

2) = 0

which yields the eigenvalues

(ω2
1, ω

2
2) = (2 +

√
2, 2−

√
2)

The first mode with eigenvalue ω2
1 will have the eigenvector

ê1 =
1√
3

[(
2+
√
2

1+
√
2

)
1

]

This corresponds to the cart and the pendulum oscillating together with the same frequency
and direction, but the pendulum will have a larger amplitude oscillation than the cart. The
mode with eigenvalue ω2

2 will have the eigenvector

ê1 =
1√
3

[
−
(

2−
√
2

1−
√
2

)
1

]

This corresponds to the pendulum and the cart oscillating at the same frequency but opposite
phase and the amplitude of the pendulum’s oscillation is larger.

Problem 5

(Taylor 11.31) Consider a frictionless rigid horizontal hoop of radius R. Onto
this hoop I thread three beads with masses 2m, m and m, and between the beads,
three identical springs, each with force constant k. Solve for the three normal
frequencies and find and describe the three normal modes.
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Solution

The three equations of motion are

mφ̈1 = −2kφ1 + kφ2 + kφ3

mφ̈2 = kφ1 − 2kφ2 + kφ3

2mφ̈3 = kφ1 + kφ2 − 2kφ3

Which gives us our mass and spring matrices

M =

m 0 0
0 m 0
0 0 2m

 , K =

2k −k −k
−k 2k −k
−k −k 2k


The matrix we will want to find the determinant of will be

(K − ω2M) =

2k −mω2 −k −k
−k 2k −mω2 −k
−k −k 2k − 2mω2


The determinant yields the eigenvalue polynomial of

2mω2(2k −mω2)(3k −mω2) = 0

With eigenvalues

(ω2
1, ω

2
2, ω

2
3) = (0,

2k

m
,
3k

m
)

For eigenvalue ω2
1 the eigenvector will be

ê1 =
1√
3

1
1
1


This mode is equivalent to all the beads moving together, and the springs are neither com-
pressed nor stretched. The second mode will have eigenvalue ω2

2 and will have an eigenvector

ê2 =
1√
3

 1
1
−1


This mode corresponds to the more massive bead oscillating with the opposite phase of the
other two beads but the same amplitude and frequency. The third mode will have eigenvalue
ω2
3 and will have an eigenvector

ê3 =
1√
2

 1
−1
0


This mode corresponds to the more massive bead not moving and the other two beads
oscillating with the same amplitude and frequency but opposite phase.
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Problem 6

(Taylor 11.32) As a model of a linear triatomic molecule (such as CO2), consider
the system shown in Figure 11.21, with two identical atoms each of mass m
connected by two identical springs to a single atom of mass M . To simplify
matters, assume that the system is confined to move in one dimension.

a) Write down the Lagrangian and find the normal frequencies of the system.
Show that one of the normal frequencies is zero.

b) Find and describe the motion in the normal modes whose frequencies are
nonzero.

c) Do the same for the mode with zero frequency. [Hint: See the comments
at the end of problem 11.27.]

Solution

a) The equations of motion are
mẍ1 = −kx1 + kx2

Mẍ2 = kx1 − 2kx2 + kx3

mẍ3 = kx2 − kx3
which gives the mass and spring matrices

M =

m 0 0
0 M 0
0 0 m

 , K =

 k −k 0
−k 2k −k
0 −k k


This gives us an eigenmatrix

(K − ω2M ) =

k − ω2m −k 0
−k 2k − ω2M −k
0 −k k − ω2m


This gives the eigenvalue polynomial

(k − ω2m)(2k − ω2M)(k − ω2m)− k2) + k(ω2mk − k2) = 0

(k − ω2m)(2k2 − 2kω2m− ω2kM + ω4mM − 2k2) = 0

(k − ω2m)(ω4mM − (2km+ kM)ω2) = 0

ω2(k − ω2m)(ω2 − 2km+ kM

mM
) = 0
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which gives the eigenvalues

(ω2
1, ω

2
2, ω

2
3) = (0,

k

m
,

2k

M
+
k

m
)

b) The second mode will have the eigenvalue ω2
2 which will yield the eigenvector

ê2 =
1√
2

 1
0
−1


or with the equation of motion

x =

 A
0
−A

 cos(ω2t− δ)

This corresponds to the outer masses oscillating at the same amplitude and frequency as
each other, but opposite phases while the middle mass is not moving. The third mode will
have the eigenvalue ω2

3 which will yield the eigenvector

ê3 =
1√

4m2

M2 + 1 + 1

 1
−2m

M

1


or with the equation of motion

x =

 A
−2mA

M

A

 cos(ω3t− δ)

This mode corresponds to the outer masses oscillating with the same frequency and amplitude
and phase as each other while the middle mass is oscillating with the same frequency, opposite
phase and a scaled amplitude based on the ratio of the smaller masses to the bigger mass.

c) The first mode will have an eigenvalue of ω2
1 which will yield the eigenvector

ê1 =
1√
3

1
1
1


or with the equation of motion

x =

AA
A

 t+

CC
C


This mode corresponds to the translation of the molecule in a direction without compressing
or stretching any of the springs.
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