
Analytic Mechanics Homework Assignment 8
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Problem 1

(Taylor 7.36) A pendulum is made from a massless spring (force constant k and
unstretched length l0) that is suspended at one end from a fixed pivot O and has
a mass m attached to its other end. The spring can stretch and compress but
cannot bend, and the whole system is confined to a single vertical plane.

a) Write down the Lagrangian for the pendulum, using as a generalized co-
ordinates the usual angle φ and the length r of the spring.

b) Find the two Lagrange equations of the system and interpret them in terms
of Newton’s second law, as given in Equation (1.48).

c) The equations of part b cannot be solved analytically in general. However,
they can be solved for small oscillations. Do this and describe the motion. [Hint:
let l denote the equilibrium length of the spring with the mass hanging from it
and write r = l + ε. ”Small oscillations” involve only small values of ε and φ, so
you can use the small angle approximations and drop from your equations all
terms that involve powers of ε or φ (or their derivatives) higher than the first
power (also products of ε and φ or their derivatives). This dramatically simplifies
and uncouples the equations.]

Solution

a) Let’s start by finding the kinetic energy of the system. We have a kinetic energy term
related to the angular motion of the pendulum as well as the kinetic energy term relating to
the lengthening and shortening of the length of the pendulum.

T =
1

2
mr2φ̇2 +

1

2
mṙ2
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We next look into finding the potential energy of the system. We can define the E = 0 to
be at φ = π/2.

U = −mgr cos(φ) +
1

2
k(r − l0)2

Our Lagrangian is then

L =
1

2
mr2φ̇2 +

1

2
mṙ2 +mgr cos(φ)− 1

2
k(r − l0)2

b) Let’s start with the radial Lagrange equation.

∂L
∂r

= mrφ̇2 +mg cos(φ)− k(r − l0)

d

dt

(∂L
∂ṙ

)
= mr̈

The radial Lagrange equation is then

m(r̈ − rφ̇2) = g cos(φ)− k(r − l0)

The left hand side is our Newton’s second law equation in polar coordinates. The first term
on the right hand side is the component caused by gravity while the second term on the
right hand side is the components caused by the compression/decompression of the spring.
Let’s now look at the φ equations.

∂L
∂φ

= −mgr sin(φ)

d

dt

(∂L
∂φ̇

)
= mr2φ̈+ 2mrφ̇ṙ

The angular Lagrange equation is then

m(rφ̈+ 2φ̇ṙ) = −mg sin(φ)

The left hand side is Newton’s second law equation in polar coordinates. On the right hand
side, we have a gravitational term that is proportional to the weight of the mass.

c) Let’s first look at the radial equation

m(r̈ − rφ̇2) = mg cos(φ)− k(r − l0)

At small angles, we can assume φ ≈ 0. We can use this to try to relate the gravitational
component and the spring component. The derivatives of our coordinates can be assumed
to eb zero, which gives us

0 = mg − k(r − l0)
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mg = k(r − l0)

r =
mg

k
+ l0 = l

We want to now introduce our small perturbation of r = l + ε. Its derivatives will then be

ṙ = ε̇

r̈ = ε̈

Our equation is then

mε̈ = mg − k(
mg

k
+ l0 + ε− l0)

ε̈ = − k
m
ε

With ω2 = k/m we have sinusoidal oscillations with frequency ω in the radial direction.
Let’s move on to the angular equation.

m(rφ̈+ 2φ̇ṙ) = −mg sin(φ)

We can simplify this with small oscillations to give

(l + ε)φ̈+ 2φ̇ε̇ = −gφ

We can further simplify this into
lφ̈ = −gφ

φ̈ = −g
l
φ

With ω2 = g/l, there is an angular sinusoidal oscillation about l at frequency ω.

Problem 2

(Taylor 14.29) An elastic collision is defined as one in which the total kinetic
energy of the two particles is the same before and after the collision.

a) Show that in the CM frame, the individual kinetic energies of the two
particles are separately conserved in an elastic collision.

b) Explain clearly why the same result is obviously not true in the lab frame.
(Think about the energy of the target particle.)

c) Let ∆E denote the energy gained by the target particle in the collision
(and hence the energy lost by the projectile). Using Figure 14.15, show that the
fractional energy lost by the projectile (in the lab frame) is

∆E

E
=

4λ

(1 + λ)2
sin2

(
θ

2

)
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where, as usual, λ is the mass ratio m1/m2. (Note that in Figure 14.15 the line
DC represents the recoil momentum of the target.)

d) For a given mass ratio λ, what sort of collision gives the largest fractional
energy loss? What value of λ maximizes this energy loss? (Your answer is
important in situations where one wants a particle to lose energy as quickly as
possible—as in a nuclear reactor, for example.)

Solution

a) In the CM frame, the sum of the momenta before the collision is zero. Since the collision
is elastic, momentum is conserved so the sum of the momenta after the collision is also zero.

p1i + p2i = 0

p1f + p2f = 0

This gives us
p1i = −p2i
p1f = −p2f

The kinetic energy is conserved in an elastic collision so we can equate the kinetic energy
before and after the collision.

Ti = Tf

p2
1i

2m1

+
p2

2i

2m2

=
p2

1f

2m1

+
p2

2f

2m2

Using what we found earlier

p2
1i

( 1

m1

+
1

m2

)
= p2

1f

( 1

m1

+
1

m2

)
p2

1i = p2
1f

p2
2i = p2

2f

This tells us that the kinetic energy is conserved for each particle separately since th mag-
nitude of the momentum for each particle is unchanged after the collision.

b) In the lab frame this can’t be true since one of the particles would be initially sta-
tionary, and will then get some energy/momentum from the collision.

c) The change in energy is easiest to look at with the CM frame.

∆E =
(∆p)2

2m2

=
1

2m2

(p2
i + p2

f − 2pi · pf )
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We know that pi = pf so

∆E =
1

2m2

(2p2
i − 2p2

i cos(θCM))

=
2p2

i sin2
(
θCM

2

)
m2

The total energy is easier to find in the lab frame, since the second particle won’t be moving.

E =
p2lab1
2m1

=
(λpi + pi)

2

2m1

The ratio will then be

∆E

E
=

4m1p
2
i sin2

(
θCM

2

)
m2p2

i (λ+ 1)2
=

4λ sin2
(
θCM

2

)
(1 + λ)2

Which is what we’re after.
d) This fractional energy loss is maximum when the sine is at a maximum, which is an

angle of θCM = π, which corresponds to the incoming particle bouncing off in the exact
opposite direction from where it came. To find the λ that maximizes the energy loss, we
need to differentiate this ratio by λ and set it to zero.

∂

∂λ

(∆E

E

)
= 0 =

4(λ+ 1)2 − 8λ(λ+ 1)

(λ+ 1)4

=
4(1− λ)

(λ+ 1)3

This tells us that λ = 1 maximized this energy loss.

Problem 3

(Taylor 9.11) In this problem you will prove the equation of motion (9.34) for a
rotating frame using the Lagrangian approach. As usual, the Lagrangian method
is in many ways easier than the Newtonian (except that it calls for some slightly
tricky vector gymnastics), but is perhaps less insightful. Let S be a noninertial
frame rotating with constant velocity Ω relative to the inertial frame S0. Let
both frames have the same origin, O = O′.

a) Find the Lagrangian L = T − U in terms of the coordinates r and ṙ of
S. [Remember that you must first evaluate T in the inertial frame. In this
connection, recall that v0 = v + Ω × r.]

b) Show that the three Lagrange equations reproduce (9.34) precisely.
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Solution

a) To find the Lagrangian we need to first find the kinetic energy.

T =
1

2
mv2

0 =
1

2
mṙ + Ω × r)2

=
1

2
m(ṙ2 + 2ṙ · (Ω × r) + (Ω × r) · (Ω × r))

=
1

2
m(ṙ2 + 2(ṙ× Ω) · r + r2Ω2 − (Ω · r)2)

This gives us a Lagrangian with some potential U .

L =
1

2
m(ṙ2 + 2(ṙ× Ω) · r + r2Ω2 − (Ω · r)2)− U

b) Now we need to find how the Lagrangian changes in respect to the radial position and
the radial velocity. The radial position piece is

∂L
∂r

= m(ṙ× Ω) +mrΩ2 −m(Ω · r)Ω−∇U

= m(ṙ× Ω) +m(Ω × r) × Ω−∇U

Now, the radial velocity piece is

∂L
∂ṙ

= mṙ +m(Ω × r)

which means
d

dt

(∂L
∂ṙ

)
= mr̈ +m(Ω × ṙ)

Equating these two pieces gives us

mr̈ +m(Ω × ṙ) = m(ṙ× Ω) +m(Ω × r) × Ω−∇U

mr̈ = 2m(ṙ× Ω) +m(Ω × r) × Ω + F

Which is exactly what we’re looking for.
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Problem 4

(Taylor 9.20) Consider a frictionless puck on a horizontal turntable that is ro-
tating counterclockwise with angular velocity Ω.

a) Write down Newton’s second law for the coordinates x and y of the puck
as seen by me standing on the turntable. (Be sure to include the centrifugal and
Coriolis forces, but ignore the earth’s rotation.)

b) Solve the two equations by the trick of writing η = x + iy and guessing a
solution of the form η = e−iαt. [In this case—as in the case of critically damped
SHM discussed in section 5.4—you get only one solution this way. The other has
the same form (5.43) we found for the second solution in damped SHM.] Write
down the general solution.

c) At time t = 0, I push the puck from position r0 = (x0, 0) with velocity
v0 = (vx0, vy0) (All as measured by me on the turntable). Show that

x(t) = (x0 + vx0t) cos(Ωt) + (vy0 + Ωx0)t sin(Ωt)

y(t) = −(x0 + vx0t) sin(Ωt) + (vy0 + Ωx0)t cos(Ωt)

d) Describe and sketch the behavior of the puck for large values of t. [Hint:
When t is large the terms proportional to t dominate (except in the case that
both their coefficients are zero). With t large, write (9.72) in the form x(t) =
t(B1 cos(Ωt)+B2 sin(Ωt)), with similar expression for y(t), and use the trick of (5.11)
to combine the sine and cosine into a single cosine—or sine, in the case of y(t).
By now you can recognize that the path is the same kind of spiral, whatever the
initial conditions (with the one exception mentioned).]

Solution

a) Since we have no additional forces besides the Coriolis force and the centrifugal force, our
Newton’s second la equation is

mr̈ = 2mṙ× Ω +m(Ω × r) × Ω

If we say that the table is the x-y plane, we can define the following vectors

r = xx̂+ yŷ

ṙ = ẋx̂+ ẏŷ

r̈ = ẍx̂+ ÿŷ
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Ω = Ωẑ

We can use these to get rid of all of the cross products in the force equation.

ṙ× Ω =

∣∣∣∣∣∣
x̂ ŷ ẑ
ẋ ẏ 0
0 0 Ω

∣∣∣∣∣∣ = ẏΩx̂− ẋΩŷ

Ω × r =

∣∣∣∣∣∣
x̂ ŷ ẑ
0 0 Ω
x y 0

∣∣∣∣∣∣ = −yΩx̂+ xΩŷ

(Ω × r) × Ω =

∣∣∣∣∣∣
x̂ ŷ ẑ
−yΩ xΩ 0

0 0 Ω

∣∣∣∣∣∣ = xΩ2x̂+ yΩ2ŷ

Throwing these pieces into our force equation gives us these two equations

ẍ = xΩ2 + 2ẏΩ

ÿ = yΩ2 − 2ẋΩ

b) Using the trick, we know that

η = x+ iy

η̇ = ẋ+ iẏ

η̈ = ẍ+ iÿ

This gives us
¨eta = xΩ2 + 2ẏΩ + iyΩ2 − 2iẋΩ

= Ω2(x+ iy) + 2Ω(ẏ − iẋ)

= Ω2η − 2iΩη̇

Let’s try some complex solution to find α.

η = e−iαt

η̇ = −iαe−iαt

η̈ = −α2e−iαt

This gives us
−α2 = Ω2 − 2αΩ

α2 − 2αΩ + Ω2 = 0
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(α− Ω)2 = 0

α = Ω

We need two linearly dependent solutions so we can use

η = (A+Bt)e−iΩt

c) At t = 0, η will be
η(0) = A = x0

To find what B is, we need to differentiate η.

η̇ = Be−iΩt − iΩ(x0 +Bt)e−iΩt

Setting t = 0, this will be
η̇(0) = B − iΩx0 = vx0 + ivy0

Which means that
B = vx0 + ivy0 + iΩx0

Let’s now mess around with η to find what we want.

η = (x0 + t(vx0 + ivy0 + iΩx0))e−iΩt

= (x0 + vx0t+ it(vy0 + Ωx0))(cos(Ωt)− i sin(Ωt))

= (x0 + vx0t) cos(Ωt) + (vy0 + Ωx0)t sin(Ωt)− i(x0 + vx0t) sin(Ωt) + i(vy0 + Ωx0)t cos(Ωt)

This gives us
x = (x0 + vx0t) cos(Ωt) + (vy0 + Ωx0)t sin(Ωt)

y = −(x0 + vx0t) sin(Ωt) + (vyo + Ωx0)t cos(Ωt)

Which is what we’re after.
d) The path of the puck will be a spiral. Without the push, the puck will be traveling in

a circle. The push causes the puck to start traveling in a circular motion but with increasing
r. This increasing r is linear, and is caused by the first order terms in our equations.
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Figure 1

Problem 5

(Taylor 9.30) The Coriolis force can produce a torque on a spinning object. To
illustrate this, consider a horizontal hoop of mass m and radius r spinning with
angular velocity ω about its vertical axis at colatitude θ. Show that the Coriolis
force due to the earth’s rotation produces a torque of magnitude mωΩr2 sin(θ)
directed to the west, where Ω is the earth’s angular velocity. This torque is the
basis of the gyrocompass.

Solution

Our force is
F = 2mṙ× Ω +m(Ω × r) × Ω
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This second term will not contribute to the torque so we can ignore it. This gives us a torque
of

τ = r× F = 2mr× (ṙ× Ω)

Let’s look at our hoop in the yz-plane. This gives us

Ω = Ω sin(θ)ŷ + Ω cos(θ)ẑ

We can say that
r = Rr̂

ṙ = R ˙̂r = Rφ̇φ̂

This gives us
τ = 2mR2Ωφ̇r̂× (φ̂× (sin(θ)ŷ + cos(θ)ẑ))

We need φ̂ in cartesian coordinates which is

φ̂ = − sin(φ)x̂+ cos(φ)ŷ

This first cross product is then

(− sin(φ)x̂+ cos(φ)ŷ) × (sin(θ)ŷ + cos(θ)ẑ) =

∣∣∣∣∣∣
x̂ ŷ ẑ

− sin(φ) cos(φ) 0
0 sin(θ) cos(θ)

∣∣∣∣∣∣
= x̂ cos(φ) cos(θ) + ŷ sin(φ) cos(θ)− ẑ sin(φ) sin(θ) = A

This is in cartesian coordinates so we need r̂ also in cartesian coordinates.

r̂ = cos(φ)x̂+ sin(φ)ŷ

Let’s take this cross product

r̂×A =

∣∣∣∣∣∣
x̂ ŷ ẑ

cos(φ) sin(φ) 0
cos(φ) cos(θ) sin(φ) cos(θ) − sin(φ) sin(θ)

∣∣∣∣∣∣
= −x̂ sin2(φ) sin(θ) + ŷ cos(φ) sin(φ) sin(θ)

This gives us
τ = 2mR2Ωφ̇(−x̂ sin2(φ) sin(θ) + ŷ cos(φ) sin(φ) sin(θ))

or
dτ = 2dmR2Ωφ̇(−x̂ sin2(φ) sin(θ) + ŷ cos(φ) sin(φ) sin(θ))
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=
mR2Ωφ̇dφ

π
(−x̂ sin2(φ) sin(θ) + ŷ cos(φ) sin(φ) sin(θ))

Let’s integrate this in pieces. We can pull out the sin(θ) from the vector piece. The x integral
is ∫ 2π

0

sin2(φ)dφ = π

The y integral is ∫ 2π

0

sin(φ) cos(φ)dφ = 0

This gives us
τ = mR2Ωφ̇ sin(θ) = mr2Ωω sin(θ)

Which is what we are after.

Problem 6

(Taylor 9.31) The Compton generator is a beautiful demonstration of the Coriolis
force due to the earth’s rotation, invented by the American physicist A. H.
Compton (1892-1962, best known as author of the Compton effect) while he
was still an undergraduate. A narrow glass tube in the shape of a torus or
ring (radius R of the ring � radius of the tube) is filled with water, plus some
dust particles to let one see any motion of the water. The ring and water are
initially stationary and horizontal, but the ring is then spun through 180o about
its east-west diameter. Explain why this should cause the water to move around
the tube. Show that the speed of the water just after the 180o turn should be
2ΩR cos(θ), where Ω is the earth’s angular velocity, and θ is the colatitude of
the experiment. What would this speed be if R ≈ 1m and θ = 40o? Compton
measured this speed with a microscope and got agreement within 3%.

Solution

The ring rotation should cause the water to move because the Earth’s rotation causes a
Coriolis force to act on the water in the tube. In an inertial reference frame, that tube,
and its contents, aren’t just rotating about the West-East axis, but also rotating around
the central axis of Earth. This gives the water some angular momentum that needs to be
conserved as we rotate the tube. We want to first look at the Earth’s rotation. With θ being
its colatitude, we can define our unit vectors with ê1 being South, ê2 being East and ê3
being radially outward away from the center of Earth. We can then define Ω to be

Ω = −Ω sin(θ)ê1 + Ω cos(θ)ê3
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We need to now look at our system with the ring of radius R. We will rotate the ring an
angle α around ê2. We can also define φ to be the angle between ê1 and some position
vector r on the ring. We can the define a position vector in its three components as

r = R cos(α) cos(φ)ê1 +R sin(φ)ê2 +R sin(α) cos(φ)ê3

Since we are rotating this about α and that the ring isn’t deforming, the only coordinate
that changes over time is α so

ṙ = −Rα̇ sin(α) cos(φ)ê1 +Rα̇ cos(α) cos(φ)ê3

The Coriolis force will be the one contributing to the added torque and is

FCor = 2m(ṙ× Ω)

= 2m

∣∣∣∣∣∣
ê1 ê2 ê3

−Rα̇ sin(α) cos(φ) 0 Rα̇ cos(α) cos(φ)
−Ω sin(θ) 0 Ω cos(θ)

∣∣∣∣∣∣
= 2m(−Rα̇Ω sin(α) cos(φ) cos(θ) +Rα̇Ω cos(α) cos(φ) sin(θ))ê2

= 2mRα̇Ω cos(φ) sin(α− θ)ê2
We only care about the part of this force that goes tangentially around the ring. This would
be maximal furthest away from the axis of rotation and minimal on the axis of rotation.
This gives us the relevant force.

F = 2mRα̇Ω cos2(φ) sin(α− θ)ê2

We can now find the average acceleration

a =
Rα̇Ω sin(α− θ)

π

∫ 2π

0

cos2(φ)dφ = Rα̇Ω sin(α− θ)

The velocity is then

v =

∫
RΩ sin(α− θ)dα

dt
dt = RΩ

∫ π

0

sin(α− θ)dα

= RΩ(− cos(α− θ)
∣∣∣π
0

= 2RΩ cos(θ)

With R = 1, Ω = 7.27 × 10−5 rad/sec and θ = 40o we have a velocity of about 0.00011 m/s
for the water.
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