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Problem 1

(Taylor 8.14) Consider a particle of reduced mass µ orbiting in a central force
with U = krn where kn > 0.

a) Explain what the condition kn > 0 tells us about the force. Sketch the
effective potential energy Ueff for the cases that n = 2,−1,−3.

b) Find the radius at which the particle (with given angular momentum l)
can orbit at a fixed radius. For what values of n is this circular orbit stable? Do
your sketches confirm this conclusion?

c) For the stable case, show that the period of small oscillations about the
circular orbit is τosc = τorb/

√
n+ 2. Argue that if

√
n+ 2 is a rational number,

these orbits are closed. Sketch them for the cases that n = 2,−1, 7.

Solution

a) The force can be found by
F = −∇U = −nkrn−1

With nk > 0, this force is negative. In other words, the force is a restoring force. The
effective potential will be

Ueff = krn +
l2

2µr2

For nk > 0, both n and k need to have the same sign. Making our constant coefficients have
a magnitude of 1, this gives us these effective potentials to plot.

Ueff (n = 2) = r2 +
1

r2

Ueff (n = −1) = −1

r
+

1

r2
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Ueff (n = −3) = − 1

r3
+

1

r2

Figure 1

b) For a fixed radius orbit, the gradient of the effective potential with respect to radius
must be zero. Solving for r gives us

∇Ueff = nkrn−1 − l2

µr3
= 0

nkrn−1 =
l2

µr3

rn+2 =
l2

nkµ
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r =
( l2

nkµ

) 1
n+2

Just looking at this we can see the case where n = −2. This value is only finite if l =
√
nkµ

since 1/(n+ 2) is incredibly large, but any r will be a circular, and stable, orbit. An angular
momentum less than this will have a radius of zero, which isn’t an orbit. The second partial
derivative of the effective potential will give us the concavity of our solution, as well as the
stability of our orbits.

∂2Ueff
∂r2

= n(n− 1)krn−2 +
3l2

µr4
> 0

Using what we know about nkrn+2, we can simplify this inequality.

(n− 1)
l2

µr4
+

3l2

µr4
> 0

(n+ 2)l2

µr4
> 0

This is positive only when n > −2. This matches our sketches, recognizing that there is a
minimum with positive concavity for n = 2,−1 while there is not for n = −3.

c) Let’s start off by taylor expanding the effective potential.

Ueff = Ueff (r0) + (r − r0)U ′(r0) +
1

2
(r − r0)2U ′′(r0) +O(r3)

We can set the energy at r = r0 to be zero and we know the first derivative is zero. This
gives us

Ueff ≈
1

2
(r − r0)2U ′′(r0)

We know that

r̈ = − 1

µ

∂Ueff
∂r

Which yields us

r̈ = −(r − r0)(n+ 2)l2

µ2r40

We can add a small perturbation to the radius in the form of

r = r0 + ε

which gives us

ε̈ = r̈ = −ε(n+ 2)l2

µ2r40
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Our orbit oscillates with frequency

ωosc =
l
√
n+ 2

r20µ

or a period of oscillation of

τosc =
r20µ

l
√
n+ 2

We can now look at the orbital frequency which is

ωorb =
v

r0
=
r0φ̇

r0
=

l

µr20

or an orbital period of

τorb =
µr20
l

Which gives us the relationship we are after.

τosc =
τorb√
n+ 2

If
√
n+ 2 is a rational number, it means that in some amount of total orbits, the oscillations

and the orbital travel will meet. There will be some overall periodicity if their ratio is a
rational number. If not, there can be no periodicity and there will be no way for the particle
to ever be in the same position oriented in the same direction at any time.

Problem 2

(Taylor 8.21) a) If you haven’t already done so, do problem 8.20: Consider a
comet which passes through its aphelion at a distance rmax from the sun. Imagine
that, keeping rmax fixed, we somehow make the angular momentum l smaller and
smaller, though not actually zero; that is, we let l → 0. Use equations (8.48)
and (8.50) to show that in this limit the eccentricity ε of the elliptical orbit
approaches 1 and that the distance of closest approach rmin approaches zero.
Describe the orbit with rmax fixed but l very small. What is the semimajor axis
a?

b) Use Kepler’s third law (8.55) to find the period of this orbit in terms of
rmax (and G and Ms).

c) Now consider the extreme case that the comet is released from rest at a
distance rmax from the sun. (In this case l is actually zero.) Use the technique
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described in connection with (4.58) to find how long the comet takes to reach
the sun. (Take the sun’s radius to be zero.)

d) Assuming the comet can somehow pass freely through the sun, describe
its overall motion and find its period.

e) Compare your answers in parts b and d.

Solution

a) Let’s write down equations (8.48) and (8.50) for later use.

c =
l2

γµ

rmin =
c

1 + ε

rmax =
c

1− ε
with γ being the force constant, and c is a length. If we were to let l → 0, then we know
that c→ 0. In which case

rmax(1− ε) = 0

Now, this can only be zero if rmax = 0 or ε = 1. Since we are letting rmax be nonzero
and constant, we know ε = 1. In the same regard, rmin must be zero since c = 0 and the
denominator is nonzero. The orbit will become a more and more elliptical until it converges
an unclosed parabolic path along the major axis on the limit of l → 0. The semimajor axis
will converge on this limit to a = rmax/2. Very small l will yield an elliptical orbit with
eccentricity just below 1, enough to keep it a closed orbit.

b) Kepler’s third law is

τ 2 =
4π2

GMs

a3

Plugging in what we found in part a gives us

τ 2 =
π2

2GMs

r3max

c) Equation (4.58) is

t =

√
m

2

∫ 0

rmax

dr√
E − U(r)

The energy will be it’s initial total energy

E = −GmMs

rmax
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and the potential energy is

U(r) = −GmMs

r

This means the time is

t =

√
m

2

∫ 0

rmax

dr√
GmMs(

1
r
− 1

rmax
)

=
1√

2GMs

∫ 0

rmax

dr√
1
r
− 1

rmax

=

√
rmax

2GMs

∫ 0

rmax

√
r

rmax − r
dr

=
π

2

√
r3max

2GMs

d) The comet’s ”orbit” will be an oscillation between rmax and −rmax which means that
the time we calculated in the previous part is only a quarter of the total time it travels per
”orbit”. This would mean we have a timer period of

τ = 2π

√
r3max

2GMs

e) The time period of the comet in part d is twice as long as the time period of the comet
in part b.

Problem 3

A particle of mass m moves with angular momentum l in the field of a fixed force
center with

F (r) = − k
r2

+
λ

r3

where k and λ are positive.
a) Write down the transformed radial equation (8.41) and prove that the orbit

has the form
r(φ) =

c

1 + ε cos(βφ)

where c, β and ε are positive constants.
b) Find c and β in terms of the given parameters, and describe the orbit for

the case that 0 < ε < 1.
c) For what values of β is the orbit closed? What happens to your results as

λ→ 0?
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Solution

a) We can start with our transformed radial equation.

u′′ = −u− µ

l2u2
(−ku2 + λu3)

u′′ = −(1 +
µλ

l2
)u+

µk

l2

We can rewrite this as
u′′

1 + µλ
l2

= −u+
µk

l2 + µλ

By using a change in variables of

w = u− µk

l2 + µλ

We can rewrite our equation

w′′ = −
(

1 +
µλ

l2

)
w = −β2w

With

β =

√
1 +

µλ

l2

This gives us the solution
w = A cos(βφ)

Plugging this into our equation relating w and u, we can solve for u.

A cos(βφ) = u− µk

l2 + µλ

u = A cos(βφ) +
µk

l2 + µλ

=
µk

l2 + µλ
(ε cos(βφ) + 1)

Since we know u is the multiplicative inverse of r, this gives us

r =
c

1 + ε cos(βφ)

With

c =
l2 + µλ

µk
=

l2

µk
+
λ

k
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ε =
A(l2 + µλ)

µk

b) As found in the previous section

β =

√
1 +

µλ

l2

c =
l2 + µλ

µk

The orbit with 0 < ε < 1 will oscillate between its minimum and maximum r values as given
by

rmin =
c

1 + ε

rmax =
c

1− ε
c) The orbit is closed when ε < 1.

ε =
A(l2 + µλ)

µk
< 1

Now, we just need to get β in there.

β2 =
l2 + µλ

l2

l2β2 = l2 + µλ

Plugging this into our expression for ε gives us

Al2β2

µk
< 1

β2 <
µk

Al2

Which is our condition for β for a closed orbit. Next, we look at the limit as λ→ 0.

ε =
A(l2 + µλ)

µk
=
Al2

µk

β =

√
l2 + µλ

l2
= 1

c =
l2 + µλ

µk
=

l2

µk

This leads us to our radial equation to be

r =
l2

µk + Al2 cos(φ)
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Problem 4

(Taylor 8.31) Consider the motion of two particles subject to a repulsive inverse-
square force (for example, two positive charges). Show that this system has no
states with E < 0 (as measured in the CM frame), and that in all states with
E > 0, the relative motion follows a hyperbola. Sketch a typical orbit. [Hint:
You can follow closely the analysis of sections 8.6 and 8.7 except that you must
reverse the force; probably the simplest way to do this is to change the sign of
γ in (8.44) and all subsequent equations(so that F (r) = +γ/r2) and then keep γ
itself positive. Assume l 6= 0.]

Solution

We start with our differential equation

u′′ = −u− µ

l2u2
F

with
F = γu2

This gives us

u′′ = −u− µγ

l2

Using a change in variables

w = u+
µγ

l2

the new differential equation is
w′′ = −w

which yields solution
w = A cos(φ+ δ)

With proper selection of our starting point of φ can allow us to get rid of δ so

w = A cos(φ)

Solving for u gives us

u = w − µγ

l2
= A cos(φ)− µγ

l2

We can then get this as a function r by inverting it and simplifying to get

r =
l2

µγ(ε cos(φ)− 1)
=

c

ε cos(φ)− 1
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with

c =
l2

µγ

ε =
Al2

µγ

The energy is

E =
γ2µ

2l2
(ε2 − 1)

This energy is only positive if ε > 1, which would mean that all positive energy states have
a hyperbolic path. If ε < 1, r would be negative, which isn’t possible, so there are no states
with negative energy. The math will look similar to the following graph.

Figure 2
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Problem 5

(Taylor 8.35) A spacecraft in a circular orbit wishes to transfer to another circular
orbit of quarter the radius by means of a tangential thrust to move into an
elliptical orbit and a second tangential thrust at the opposite end of the ellipse
to move into the desired circular orbit. (The picture looks like figure 8.13 but
run backwards.) Find the thrust factors required and show that the speed in
the final orbit is two times greater than the initial speed.

Solution

We start off with a circular orbit of radius R1. This can be related to the elliptical path that
will take us to the smaller orbit after the first thrust by

R1 = c1 =
c2

1− ε
=
λ2R1

1− ε

This interesting change of sign from our typical equation is due to us mapping a perigee to
an apogee, so a minimum of the circular path is the maximum of the elliptical path. We can
solve this equation for ε to get

1− ε = λ21

ε = 1− λ21
Now, we want to map the perigee of this ellipse to the desired circular orbit and we can do
that with this equation

R2 =
R1

4
=

c2
1 + ε

=
λ21R1

2− λ21
1

2
− λ21

4
= λ21

λ21 =
2

5

Now, we need to see what happens after the second thrust to return ourselves to a circular
orbit.

R

4
= λ22c2 = λ21λ

2
2

We can solve this for our new λ2.

λ22 =
1

4λ21
=

5

8

The final velocity is then

v3 =
v2a
v2p

λ1λ2v1
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= 4

√
5

8

√
2

5
v1 = 2v1

So, the final velocity is twice that of the initial velocity.

Problem 6

A particle with mass m is scattered by a fixed force center according to the
force given by F (r) = kr−3, where k is a constant and r is the distance between
the particle and the force center. If the initial speed of the particle is v0, and
it is moving from far away toward the force center, show that the differential
scattering cross section is

dσ

dθ
=

kπ2(π − θ)
mv20θ

2(2π − θ)2 sin(θ)

where θ is the scattering angle.

Solution

The scattering angle θ is
θ = π − 2ψ

with ψ being the angle of the particle from a unit vector that points towards the point of
closest approach from the target. We can find ψ by solving this integral

ψ =

∫ ∞
rmin

b
r2
dr√

1− b2

r2
− U

T

The potential energy is

U = −
∫
Fdr =

k

r2

The initial kinetic energy is

T =
1

2
mv20

We can also use the change of variable

u =
1

r

The integral will then be

ψ =

∫ umax

0

bdu√
1− b2u2 − ku2

mv20
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=
b

2
√
b2 + k

mv20

arcsin

(√
b2 +

k

mv20
u

)∣∣∣umax

0

We know that umax can be determined by the non-1 piece in the denominator of our integral.

umax =
1√

b2 + k
mv20

This makes

ψ =
πb

2
√
b2 + k

mv20

Now, we need solve this for b.

2ψ

√
b2 +

k

mv20
= πb

4ψ2(b2 +
k

mv20
) = π2b2

b2 =
4ψ2k

mv20(π2 − 4ψ2)

We know that

ψ =
1

2
(π − θ)

Plugging this in gives us

b2 =
k(π − θ)2

mv20(2πθ − θ2)
The differential cross-section is

dσ

dΩ
=

b

sin(θ)

∣∣∣db
dθ

∣∣∣
Let’s start with finding the differential

db

dθ
= − 1

v0

√
k

mθ(2π − θ)
− (π − θ)

v0

√
k

m

( π − θ
(θ(2π − θ))3/2

)
The absolute value will remove the negatives and let’s multiply this by b.

b
∣∣∣db
dθ

∣∣∣ =
(π − θ)
v20

( k

mθ(2π − θ)

)
+

k(π − θ)3

v20m(θ(2π − θ))2
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After some simplifying gives us

d
∣∣∣db
dθ

∣∣∣ =
kπ2(π − θ)

mv20θ
2(2π − θ)2

Finally, bringing in the sine gives us our differential cross-section.

dσ

dΩ
=

kπ2(π − θ)
mv20θ

2 sin(θ)(2π − θ)2

Which is what we were after.
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