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Problem 1

(Taylor 6.4) A ray of light travels from point P1 in a medium of refractive index
n1 to P2 in a medium of index n2, by way of the point Q on the plane interface
between the two media, as in Figure 6.9. Show that Fermat’s principle implies
that, on the actual path followed, Q lies in the same vertical plane as P1 and
P2 and obeys Snell’s law, that n1 sin(θ1) = n2 sin(θ2). [Hint: Let the interface be
the xz plane, and let P1 lie on the y axis at (0, h1, 0) and P2 in the x, y plane at
(x2,−h2, 0). Finally let Q = (x, 0, z). Calculate the time for the light to traverse
the path P1QP2 and show that it is minimum when Q has z = 0 and satisfies
Snell’s law.]

Solution

We can define some variable S which is the sum of our two lengths weighted by their medium’s
refractive index.

S = n1S1 + n2S2 = n1

√
x2 + h21 + z2 + n2

√
(x2 − x)2 + h22 + z2

For this to be a minimum, the partial derivative in respect to z and x must be zero. Let’s
look at the z part first.

∂S

∂z
=

n1z√
x2 + h21 + z2

+
n2z√

(x2 − x)2 + h22 + z2

= z
(n1

S1

+
n2

S2

)
= 0

Now, this means z has to be zero, since the term inside the parentheses must be nonzero.
Now we can look at the partial derivative in respect to x.

∂S

∂x
=

n1x√
x2 + h21

− n2(x2 − x)√
(x2 − x)2 + h22

= 0
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This yields Snell’s Law
n1 sin(θ1) = n2 sin(θ2)

Problem 2

(Taylor 6.19) A surface of revolution is generated as follows: Two fixed points
(x1, y1) and (x2, y2) in the x, y plane are joined by a curve y = y(x). [Actually,
you’ll make life easier if you start out writing this as x = x(y).] The whole curve
is now rotated about the x axis to generate a surface. Show that the curve for
which the area of the surface is stationary has the form y = y0 cosh((x− x0)/y0),
where x0 and y0 are constants. (This is often called the soap-bubble problem,
since the resulting surface is usually the shape of a soap bubble held by two
coaxial rings of radii y1 and y2.)

Solution

We start with our surface, which can be defined by the following integral

S = 2π

∫
y
√

1 + x′2dy

We can find where this surface is stationary by using the Euler-Lagrange equations on the
function

f = 2πy
√

1 + x′2

∂f

∂x
= 0

∂f

∂x′
=

2πyx′√
1 + x′2

= A

We know that A is a constant because the first partial derivative we found is zero. Let’s
solve for x′.

x′2(4π2y2 − A2) = A2

x′ =
A√

4π2y2 − A2

We can integrate this using a change in variables

u = 2πy

du = 2πdy
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dx =
1

2π

Adu√
u2 − A2

Integrating this gives us

x =
A

2π
ln
(√

u2 − A2 + u
)

+B

Rearranging this gives us

2π(x−B)

A
= ln

(√
u2 − A2 + u

)
e

2π(x−B)
A =

√
u2 − A2 + u = η

We need to solve for u in terms of η to deal with this mess

(η − u)2 = u2 − A2 = η2 − 2uη + u2

η2 + A2 = 2uη

u =
η2 + A2

2η
= 2πy

Solving for y we get

y =
η2 + A2

4πη
=
e

4π(x−B)
A + A2

4πe
2π(x−B)

A

=
1

4π
(e

2π(x−B)
A + A2e−

2π(x−B)
A )

For this to be a hyperbolic cosine, A needs to be 1. We can then say that

y0 =
1

2π

x0 = B

Which gives us

y = y0 cosh

(
(x− x0)

y0

)

Problem 3

(Taylor 6.23) An aircraft whose airspeed is v0 has to fly from town O (at the
origin) to town P , which is a distance D due east. There is a steady gentle
wind shear, such that v = V yx̂, where x and y are measured east and north
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respectively. Find the path, y = y(x), which the plane should follow to minimize
its flight time, as follows:

a) Find the plane’s ground speed in terms of v0, V , φ (the angle by which the
plane heads to the north of east), and the plane’s position.

b) Write down the time of flight as an integral of the form
∫ D
0
fdx. Show that

if we assume that y′ and φ both remain small (as is certainly reasonable if the
wind speed is not too large), then the integrand f takes the approximate form
f = (1 + 1

2
y′2)/(1 + ky) (times an uninteresting constant) where k = V/v0.

c) Write down the Euler-Lagrange equation that determines the best path.
To solve it, make the intelligent guess that y(x) = λx(D− x), which clearly passes
through the two towns. Show that it satisfies the Euler-Lagrange, provided
λ = (

√
4 + 2k2D2 − 2)/(kD2). How far north does this path take the plane, if

D = 2000 miles, v0 = 500 mph, and the wind shear is V = 0.5 mph/mi? How much
time does the plane save by following this path? [You’ll probably want to use a
computer to do this integral.]

Solution

a) The total velocity of the airplane can be described by

v = (v0 cos(φ) + V y)x̂+ v0 sin(φ)ŷ

and the speed is

v =
√

(v0 cos(φ) + V y)2 + v20 sin2(φ)

b) So, we know that
ds

dt
= v

Now, ds is found using the pythagorean theorem

ds =
√
dx2 + dy2 = dx

√
1 + y′2

And since we only care about the horizontal part of our speed, we get

dt =
dx
√

1 + y′2

v0 cos(φ) + V y

Here comes the part where we start approximating stuff. With our given assumptions, we
find

dt =
dx(1 + 1

2
y′2)

v0 + V y
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Pulling out v0, we get an integral of the form

dt =
1

v0

∫ D

0

1 + y′2

1 + ky
dx

Which is what we’re after.
c) We are going to be looking for something of the form

∂f

∂y
− d

dx

∂f

∂y′

So the first term will be
∂f

∂y
= −k(1 + y′2)

(1 + ky)2

The partial derivative with respect to y′ is

∂f

∂y′
=

y′

1 + ky

So the second term is
d

dx

∂f

∂y′
=
y′′(1 + ky)− ky′2

(1 + ky)2

Our resultant differential equation will then be

y′′(1 + ky)− k

2
y′2 + k = 0

Using the cunning solution provided

y = λx(D − x)

y′ = λ(D − 2x)

y′′ = −2x

Plugging this into our differential equation yields us

−2λ(1 + kλx(D − x))− k

2
(λD − 2λx)2 + k = 0

−2λ− 2λ62xDk + 2λ2x2k − k

2
(λ2D2 − 4λ2Dx+ 4λ2x2) + k = 0

λ2
(
− kD2

2

)
− 2λ+ k = 0
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λ2kD2 + 4λ− 2k = 0

Using the quadratic formula gives us

λ =
−2±

√
4 + 2k2D2

kD2

We need to find the maximum of y so

y′ = 0 = λ(D − 2x)

x =
D

2
Solving for lambda gives us

λ = 3.66 × 10−4

These together gives us a maximum y of

y = 366.025 mi

To find the time difference between fastest path and a straight line, we just have to solve
the integral

∆t =
1

v0

∫ D

0

1 + λ2(D − 2x)2

1 + kλx(D − x)
dx− D

v0

This will yield a time difference of about 0.4 hours.

Problem 4

(Taylor 6.25) Consider a single loop of the cycloid (6.26) with a fixed value of a,
as shown in Figure 6.11. A cart is released from rest at a point P0 anywhere on
the track between O and the lowest point P (that is, P0 has parameter 0 < θ0 < π).
Show that the time for the cart to roll from P0 to P is given by the integral

time(P0 → P ) =

√
a

g

∫ π

θ0

√
1− cos(θ)

cos(θ0)− cos(θ)
dθ

and prove that this time is equal to π
√
a/g. Since this is independent of the

position of P0, the cart takes the same time to roll from P0 to P , whether P0 is
at O, or anywhere between O and P , even infinitessimally close to P . Explain
qualitatively how this surprising result can possibly be true. [Hint: To do math-
ematics, you have to make some cunning changes of variables. One route is this:
Write θ = π − 2α and then use the relevant trig identities to replace the cosines
of θ by sines of α. Now substitutes sin(α) = u and do the remaining integral.]
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Solution

The parametric equation for a cycloid is

x = a(θ − sin(θ))

y = a(1− cos(θ))

Using conservation of energy, we get the relation

mga(1− cos(θ))−mga(1− cos(θ0)) =
1

2
mv2

Solving for v gives us
v =

√
2ga(cos(θ0)− cos(θ))

We can also find that the curve is

ds =

√(dx
dθ

)2
+
(dy
dθ

)2
dθ

=
√

(a− a cos(θ))2 + (a sin(θ))2dθ

=
√

2a2(1− cos(θ)dθ

The time can be determined by

t =
ds

v
=

√
a

g

∫ π

θ0

√
1− cos(θ)

cos(θ0)− cos(θ)
dθ

Using the suggested change of variables, we can try to manipulate this integrand into some-
thing more easy to deal with.

θ = π − 2α

dθ = −2dα

alpha0 =
π − θ0

2
αf = 0

cos(θ) = cos(π − 2α) = − cos(−2α) = − cos(2α)

= cos2(α)− sin2(α) = 1− 2 sin2(α)

Plugging these into the main integral yields us

t = −2

√
a

g

∫ 0

α0

√
2− 2 sin2(α)

cos(θ0) + 1− 2 sin2(α)
dα
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= −2

√
a

g

∫ 0

α0

cos(α)√
cos2

(
θ0
2

)
− sin2(α)

dα

We can then use another change of variables

u = sin(α)

du = cos(α)dα

u0 = sin(α0) = sin

(
π − θ0

2

)
= − cos

(
θ0
2

)
uf = 0

Plugging this into our integral, we have

t = −2

√
a

g

∫ 0

u0

du√
u20 − u2

Now, we can solve this and get

t = −2

√
a

g
arctan

(
u√

u20 − u2

)∣∣∣0
u0

= −2

√
a

g

(−π
2

)
= π

√
a

g

Which is what we are after. This can make sense from a qualitative perspective by the
increasing slope. The higher up we release the cart, the less of the cycloid is in the way of
cart, so it is able to accelerate downwards faster. As the cart travels along the cycloid, it’s
redirected more in a horizontal direction and isn’t as effected by gravity. The angle between
the normal force and gravity are changing in such a way along a cycloid, that they are able
to maintain the same time of travel, regardless of the starting position.

Problem 5

(Taylor 7.8) a) Write down the Lagrangian L(x1, x2, ẋ1, ẋ2) for two particles of
equal masses, m1 = m2 = m, confined to the x axis and connected by a spring with
potential energy U = 1

2
kx2. [Here x is the extension of the spring, x = (x1−x2− l),

where l is the string’s unstretched length, and I assume that mass 1 remains to
the right of mass 2 at all times.]

b) Rewrite L in terms of the new variables X = 1
2
(x1 + x2) (the CM position)

and x (the extension), and write down the two Lagrange equations for X and x.
c) Solve for X(t) and x(t) and describe the motion.
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Solution

a) We can start off on finding our first Lagrangian

L(x1, x2, ẋ1, ẋ2) =
1

2
m(ẋ21 + ẋ22)−

1

2
k(x21 − 2x1x2 − 2x1l + 2x2l + x22 + l2)

b) With our new change in variables, we need to solve for x1 and x2 individually. First,
we know that

x1 = x2 + x+ l

x2 = x1 − x− l

So

X =
1

2
(2x1 − x− l)

x1 = X +
x

2
+
l

2

ẋ1 = Ẋ +
ẋ

2

X =
1

2
(2x2 + x+ l)

x2 = X − x

2
− l

2

ẋ2 = Ẋ − ẋ

2

We can now use these to build up a prettier Lagrangian

L(x,X, ẋ, Ẋ) =
1

2
m((Ẋ +

ẋ

2
)2 + (Ẋ − ẋ

2
)2)− 1

2
kx2

= m
(
Ẋ2 +

ẋ2

4

)
− 1

2
kx2

This gives us two sets of Lagrange Equations

∂L
∂x

= −kx

d

dt

(∂L
∂ẋ

)
=

d

dt

(m
2
ẋ
)

=
mẍ

2

∂L
∂X

= 0
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d

dt

( ∂L
∂Ẋ

)
=

d

dt
(2mẊ) = 2mẌ

This gives us two differential equations

ẍ = −2k

m
x

Ẍ = 0

c) We can solve the first equation by setting ω to be

ω2 =
2k

m

This gives us
x(t) = A cos(ωt) +B sin(ωt)

With A and B being determined by our initial conditions. The spring can be seen to oscillate,
or the particles are moving towards each other and away from each other in a periodic fashion.
We can now solve the second equation to be of the form

X(t) = Ct+D

With C and D being determined by the initial conditions. This is a linear function, so the
center of mass is moving along at a constant speed in some direction.

Problem 6

(Taylor 7.13) In section 7.4 [Equations (7.41) through (7.51)], I proved Lagrange’s
equations for a single particle constrained to move on a two-dimensional surface.
Go through the same steps to prove Lagrange’s equations for a system consisting
of two particles subject to various unspecified constraints. [Hint: The net force
on particle 1 is the sum of the total constraint force F cstr

1 and the total constraint
force F1, and likewise for particle 2. The constraint forces come in many guises
(the normal force of a surface, the tension force of a string tied between the
particles, etc.), but is always true that the net work done by all constraint
forces in any displacement consistent with the constraints is zero–this is the
defining property of constraint forces. Meanwhile, we take for granted that the
nonconstraint forces are derivable from a potential energy U(r1, r2, t); that is
F1 = −∇1U and likewise for particle 2. Write down the difference δS between the
action integral for the right path given by r1(t) and r2(t) and any nearby wrong
path given by r1(t) + ε1(t) and r2(t) + ε2(t). Paralleling the steps of section 7.4,
you can show that δS is given by an integral analogous to (7.49), and this is zero
by the defining property of constraint forces.]
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Solution

We can start by defining our paths. R will represent incorrect paths, ε is a deviation from
the correct path, and r will represent the correct path.

Ri(t) = ri(t) + εi(t)

Our paths will start and stop at the same point so the action will be

S =

∫ t

0

L(Ri, Ṙi, t
′)dt′

With the correct action being

S0 =

∫ t

0

L(ri, ṙi, t
′)dt′

The difference in action will be
δS = S − S0

Alternatively, the change in Lagrangian is

δL = L(Ri, Ṙi, t
′)− L(ri, ṙi, t

′)

This second term could then be described by

L(ri, ṙi, t) =
1

2
mṙ2i − U(ri, t)

This will lead us to

δL =
1

2
m((ṙi + ε̇i)

2 − ṙ2i )− (U(ri + εi, t)− U(ri, t)) = mṙi · ε̇i − εi · ∇iU +O(ε2)

To first order, the change in action is then

δS =

∫ t

0

δLdt′ =
∫ t

0

(mṙi · ε̇i − εi · ∇iU)dt′

Integrating by parts, we get

δS = −
∫ t

0

εi · (mr̈i +∇iU)dt′

The first term is our total force, which included both constraint forces and nonconstraint
forces, and the second term is the negative of our nonconstraint forces. This gives us

δS = −
∫ t

0

εi · F cstrdt
′

Constraint forces are perpendicular to the plane of motion and ε lies on the plane of motion,
this integral must be zero. This means that the action integral is stationary at the right
path.
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