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Canonical Partition Function

Z =
∑
n

e−βEn

With

β =
1

kT

The probability distribution will then be

Pn =
1

Z
e−βEn

Average Energy

The average energy of our system will be

〈E〉 =
∑
n

EnPn =
1

Z

∑
n

Ene
−βEn = − 1

Z

∂Z

∂β
= − ∂

∂β
ln(Z)

We can find the dispersion, or variance of our energy using

(∆E)2 =
〈
(E − 〈E〉)2

〉
=
〈
E2
〉
− 〈E〉2 = σ2

We can use the partition function to easily find our variance of energy.
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Looking deeper into different forms of the energy variance gives us

σ2
E = − ∂

∂β
〈E〉 = −∂T

∂β

(∂E
∂T

)
V,N

= kT 2Cv

σ2
E = kT 2Cv

There are two different interpretations of this equation.
1) It is a special case of the Fluctuation Dissipation Theorem. The LHS is fluc-

tuations in the equilibrium and the RHS is a response function. A small change of the
equilibrium is used to see how the energy responds.

2) The variance is proportional to the size N of the system as Cv scales with size. This
might seem like a problem since it diverges, but we can solve that problem by looking at
relative fluctuations.

∆E

〈E〉
∝
√
N

N
∝ 1√

N
This relative energy fluctuation vanishes as N increases. This can be considered the ther-
modynamic limit.

Example: Two State System

We return to our spin-1/2 system with energy

E = −
N∑
i=1

ε

2
σi

with sigmai = ±1. Our partition function for this system, assuming each particle’s spin is
independent of the others is

ZN = (Z1)
N

Z1 = e−βE↑ + e−βE↓ = e−
βε
2 + e

βε
2 = 2 cosh

(
βε

2

)
ZN = 2N coshN(

βε

2
)

Let’s manipulate this partition function to give us our average energy and specific heat.

ln(ZN) = N ln(2) +N ln

(
cosh

(
βε

2

))
〈E〉 = − ∂

∂β
ln(Z) = −Nε

2
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2

)
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)
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Gibb’s Entropy

We can make M copies of the system with M sufficiently large and each copy is in the state
n. The probability distribution of our system can be any arbitrary Pn. PnM are in state n.
Our multiplicity function will be

ΩM =
M !∏

(PnM)!

We can find the entropy to be
SM = k ln(ΩM)

= k(M ln(M)−M −
∑
n

(MPn ln(MPn)−MPn))

= −kM
∑

Pn ln(¶n)

Our Gibb’s Entropy will then be

S = −k
∑

Pn ln(Pn)

With the micro-canonical ensemble probability being

Pn =
1

|omega

We can plug that into our Gibb’s Entropy equation to get

S = k ln

(∑ 1

Ω
ln(Ω)

)
= k ln(Ω)

Which exactly what we expect.

Canonical Entropy

We can use Gibb’s Entropy with the canonical ensemble as well.

S = −k
∑
n

1

Z
e−βEn ln

(
1

Z
e−βEn

)

=
kβ

Z

∑
n

Ene
−βEn +

k

Z

∑
n

e−βEn ln(Z)

= kβ 〈E〉+ k ln(Z) =
∂

∂T
(kT ln(Z))
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