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Micro-canonical Ensemble Summary

In a closed system, the energy is fixed. Q(F, X) is the number of microstates with energy
FE and other macro-observables X.

S(E,X) = kIn(Q(E, X))

Ergodic Hypothesis: all micro-states are equally probable.
Equilibrium: Variable X adjusts to the most probable state (maximum entropy)
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Discrete Energy

At this time it might be weird seeing some type of differential of energy while knowing that
the energy levels of a quantum system are discrete. Let’s look into why we can treat the

energy like it is continuous.
Qs(F) = D(E)OE
S(E) =kIn(QE)) =kIn(D(E)) + kIn(dE)
D(F) is our density of states and in this case can de described by
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Plugging this into our equation for entropy
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The second term is a lot smaller than the first term, and can be neglected, so the dis-
creteness of the energy really doesn’t matter much with large ensembles.

There are problems with the micro-canonical ensemble, however. Most systems are not
closed and it is difficult and tedious to count states of fixed energy.

Canonical Ensemble

We want to look at a system of a large reservoir and a smaller subsystem. The reservoir is
sufficiently large so that the temperature is fixed.
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Since F,, << F;, we can use a taylor expansion to simplify this mess.
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with g = % being the inverse temperature and Z being our partition function.
The exponential is called the Boltzmann Factor.
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The partition function normalizes our probability distribution. The partition function
also is multiplicative when adding multiple systems, much like the multiplicity function.



