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Micro-canonical Ensemble Summary

In a closed system, the energy is fixed. Ω(E,X) is the number of microstates with energy
E and other macro-observables X.

S(E,X) = k ln(Ω(E,X))

Ergodic Hypothesis: all micro-states are equally probable.
Equilibrium: Variable X adjusts to the most probable state (maximum entropy)
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Discrete Energy

At this time it might be weird seeing some type of differential of energy while knowing that
the energy levels of a quantum system are discrete. Let’s look into why we can treat the
energy like it is continuous.

ΩδE(E) = D(E)δE

S(E) = k ln(Ω(E)) = k ln(D(E)) + k ln(δE)

D(E) is our density of states and in this case can de described by
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Plugging this into our equation for entropy

S(E) = k ln
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)
+ k ln(δE)

= kN ln(2)− k ln(BN) + k ln(δE)

= kN ln(2) + k ln
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)
= kN ln(2)− k ln

(
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)
The second term is a lot smaller than the first term, and can be neglected, so the dis-

creteness of the energy really doesn’t matter much with large ensembles.
There are problems with the micro-canonical ensemble, however. Most systems are not

closed and it is difficult and tedious to count states of fixed energy.

Canonical Ensemble

We want to look at a system of a large reservoir and a smaller subsystem. The reservoir is
sufficiently large so that the temperature is fixed.
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Since En << Etot, we can use a taylor expansion to simplify this mess.
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with β = 1
kT

being the inverse temperature and Z being our partition function.
The exponential is called the Boltzmann Factor.
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Z =
∑
n

e−βEn

The partition function normalizes our probability distribution. The partition function
also is multiplicative when adding multiple systems, much like the multiplicity function.
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