
Thermodynamics and Statistical Mechanics Homework
Assignment 2

Todd Hirtler

12Feb20

Problem 1

Cold Interstellar molecular clouds often contain the molecule cyanogen (CN)
whose first rotational excited states have an energy of ε0 = 4.7 × 10−4eV above
the ground state. In 1941, studies revealed that starlight passing through these
molecular clouds showed that 29 percent of the CN molecules are in the first
excited rotational state. To account for this data, astronomers suggested that
the CN molecules might be in thermal equilibrium with a reservoir at a well
defined temperature.

a) The energy of the rotational state with angular momentum j (j = 0, 1, 2, . . .)
is given by ε(j) = ε0j(j + 1)/2, and the degeneracy of the level (i.e. number of
states with the same energy) is g(j) = 2j+1. Note that the ground state has j = 0.
Find an expression for the temperature of the thermal reservoir as a function of
the fraction x of the excited CN molecules. For simplicity, neglect occupation of
states with j > 1.

b) Evaluate your answer from part a to find the temperature corresponding
to the observed excited fraction. What do you think is the origin of the thermal
radiation with which the CN molecule is in equilibrium?

c) Justify the assumption made in part a, that all the molecules are either in
the ground or first excited state. (Hint: Using your temperature from part b,
compute the fraction of molecules that will be in the second excited state.)

Solution

a) The percentage of CN in the first excited state can be found by using

P (E1) =
3e−βE1

e−βE0 + 3e−βE1
=

3e−βε0

3e−βε0 + 1
=

3

3 + eβε0
= x
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The 3 comes from the degeneracy of the first excited state. Rearranging our equation, we
get

3

x
− 3 = eβε0

ln

(
3

x
− 3

)
= βε0 =

ε0
kT

T =
ε0

k ln
(

3
x
− 3
)

b) Plugging in our given values, we get

T =
4.7 × 10−4

8.617 × 10−5 ln
(

3
0.29
− 3
) = 2.7K

The origin of this thermal radiation is probably related to cosmic background radiation, or
some large volume of photons traveling through space.

c) The percentage of CN in the second excited state will be

P (E2) =
5e−3βε0

1 + 3e−βε0 + 5e−3βε0

Plugging in the temperature from the previous part the gives us

P (E2) = 0.008

Since this percentage is far less than 1, the second excited state doesn’t really contribute
much and can be neglected.

Problem 2

Consider a DNA molecule, with N links. If a link is closed, it is of energy 0,
and if open, ε. However, the DNA requires that the links can open only one at
a time from the left end. That is, link s from the left can be open only if links
1 through s− 1 are all open.

a) Find that partition function.
b) In the limit of ε� T , find the average number of open links.
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Solution

a) Our partition function will be

Z =
N∑
s=0

e−βEs =
N∑
s=0

e−βεs =
1− e−βεN

1− eβε

b) This part will be pretty messy so let’s rewrite the partition function in form easier to
work with.

Z =
eβε − e−βεN

eβε − 1

Let’s differentiate this in respect to β.

∂Z

∂β
=

(εeβε + εNe−βεN)(eβε − 1)− (εeβε)(eβε − e−βεN)

(eβε − 1)2

We can now divide by our partition function.

1

Z

∂Z

∂β
=
ε(e2βε − eβε +Ne−βε(N−1) −Ne−βεN − e2βε + e−βε(N−1))

(eβε − 1)(eβε − e−βεN)

=
ε(−eβε −Ne−βεN + (N + 1)e−βε(N−1))

(eβε − 1)(eβε − e−βεN)

=
ε(−eβεeβεN −N + (N + 1)eβε)

(eβε − 1)(eβε − e−βεN)eβεN

Considering the size of our terms, we can simplify the numerator and denominator making
some approximations. The only term to really batter in the numerator is the first term as the
other terms are significantly smaller than it. We can use similar logic to ignore the second
term in each parentheses in the denominator. This gives us

1

Z

∂Z

∂β
=
−εeβεeβεN

eβεNe2βε
= − ε

eβε

The expectation value of our energy, which we can use to tell us how many of our links are
open is

〈E〉 = − 1

Z

∂Z

∂β
=

ε

eβε

The average number of links open will then be this divided by ε.

〈s〉 = e−βε
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Problem 3

Consider a system of N atoms with spin S in a magnetic field Bẑ, so that the
energy of the system is

E = −
N∑
i=1

µBSzi

The Szz component of the spin can take the 2S + 1 quantized values −S,−S +
1, . . . , S, having the magnetic moments −µS, . . . , µS respectively.

a) Find the partition function.
b) Find the average magnetization. At high temperatures, compare your

result to Curie’s law.
c) Find the magnetic susceptibility of the system, χ.
d) Find the average energy.
e) Find the specific heat, Cv.

Solution

a) Since all our spins are independent, we can find the overall partition function by finding
a partition function for one particle and exponentiating it by how many particles we have.

Z1 =
S∑

m=−S

e−βµBm =
eβµBS − e−βµB(S+1)

1− e−βµB
=
eβµB(S+ 1

2
) − e−βµB(S+ 1

2
)

e
βµB

2 − e−βµB
2

=
sinh

(
βµB(S + 1

2
)
)

sinh
(
βµB

2

)
For N particles, this gives us a partition function of

ZN =
sinhN(βµB(S + 1

2
))

sinhN(βµB
2

)

b) To find the average magnetization, we will first find the Helmholtz Free Energy and
then differentiate it with respect to the magnetic field. The Helmholts Free Energy is

F = −kT ln(Z) = −kTN(ln

(
sinh

(
βµB(S +

1

2
)

))
− ln

(
sinh

(
βµB

2

))
)

The Magnetization will then be

M = −
(∂F
∂B

)
T,N
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= kTN
(βµ(S + 1

2
) cosh

(
βµB(S + 1

2
)
)

sinh
(
βµB(S + 1

2
)
) − βµ

2

cosh
(
βµB

2

)
sinh

(
βµB

2

))
M = Nµ((S +

1

2
) coth

(
βµB(S +

1

2
)

)
− 1

2
coth

(
βµB

2

)
)

Which is our equation for the average magnetization. At high temperatures, this can be
simplified by taylor expanding the hyperbolic cotangent functions to second order.

coth(x) =
1 + 1

2
x2 + . . .

x+ 1
6
x3 + . . .

=
1

x
(1 +

1

2
x2)(1 +

1

6
x2)−1

We can taylor expand that last piece to second order to get

1

x
(1 +

1

2
x2)(1− 1

6
x2) =

1

x
+
x

3

Using this for the magnetization, we get

M = Nµ((S +
1

2
)
( 1

βµB(S + 1
2
)

+
βµB(S + 1

2
)

3

)
− 1

2

( 2

βµB
+
βµB

6

)
)

=
Nµ2βB

3
(S2 + S +

1

4
− 1

4
) =

Nβµ2BS(S + 1)

3

This is of the form

M = A
B

T

which is Curie’s law.
c) Magnetic susceptibility χ can be found with

χ =
(∂M
∂B

)
T

χ = Nµ((S +
1

2
)2βµ(− csch2(βµB(S +

1

2
)) +

βµ

4
csch2(

βµB

2
))

= Nµ2β(
1

4
csch2(

βµB

2
)− (S +

1

2
)2 csch2(βµB(S +

1

2
)))

d) We can find the average energy using the partition function using

〈E〉 = −∂ ln(Z)

∂β
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Since we already did this differential earlier, but with some different constants out front, we
can use it as a skeleton and just fill the proper coefficients.

〈E〉 =
−NBµ

2
((S +

1

2
) coth

(
βµB(S +

1

2
)

)
− 1

2
coth

(
βµB

2

)
)

e) We can find the specific heat by differentiating our average energy in respect to
temperature.

Cv =
∂ 〈E〉
∂T

= −NBµ
2

((S +
1

2
)(− csch2(βµB(S +

1

2
)))(−

µB(S + 1
2
)

kT 2
)− 1

2
(− csch2(

βµB

2
))(− µB

2kT 2
)))

Cv =
NB2µ2

2kT 2
(
1

4
csch2(

βµB

2
)− (S +

1

2
)2 csch2(βµB(S +

1

2
)))

Problem 4

In this problem we revisit the Einstein solid discussed in the first problem set.
The Einstein model of a solid composed of N atoms consists of 3N independent
quantum harmonic oscillators, all with the same frequency ω (3N oscillators
because every atom can oscillate along three independent axes.) Recall that the
energy of a single harmonic oscillator in a state with n oscillator quanta is

εn =
(
n+

1

2

)
h̄ω

a) Find the partition function of the Einstein solid.
b) Find the average energy.
c) Find the heat capacity Cv.
d) Show that at high temperatures, the Einstein model correctly predicts the

Dulong-Petit law for the heat capacity of a solid,

Cv = 3NkB

Where N is the number of oscillators/atoms.

Solution

a)The partition function will be

Z =
∞∑
n=0

e−β(n+ 1
2

)h̄ω = e
−h̄ωβ

2

∞∑
n=0

e−βh̄ωn =
e

−h̄ωβ
2

1− e−βh̄ω
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b) To find the average energy, we will find the logarithm of the partition function and
differentiate it with respect to β.

ln(Z) =
−h̄β

2
− ln

(
1− e−βh̄ω

)
∂ ln(Z)

∂β
=
−h̄ω

2
− h̄ωe−βh̄ω

1− e−βh̄ω

〈E1〉 =
h̄ω

2
+

h̄ω

eβh̄ω − 1
Since we have 3N of these oscillators, the average energy will be

〈E〉 = 3Nh̄ω
(1

2
+

1

eβωh̄ − 1

)
c) Now that we have our average energy, we can differentiate it with respect to temper-

ature to find the heat capacity.

Cv =
∂ 〈E〉
∂T

=
3Nh̄2ω2

kT 2

eβh̄ω

(eβh̄ω − 1)2

We can let

βh̄ω =
θE
T

and rewrite this heat capacity equation as

Cv = 3Nk
(θE
T

)2 e
θE
T

(e
θH
T − 1)2

d) At high temperatures, we can taylor expand the exponentials and look at the lower order
terms.

Cv = 3Nk
(θH
T

)2 1 + . . .

(1 + θH
T

+ . . .− 1)2
= 3Nk

Which is what we are looking for.

Problem 5

a) Compute the partition function of 3N independent classical harmonic Oscil-
lators, i.e.

H =
3N∑
i=1

[ p2
i

2m
+

1

2
Kq2

i

]
b) Compute the heat capacity of the system and compare to the high T limit of
the Einstein model.
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Solution

a) To find our partition function, since all CHO’s are independent of each other, all we need
to do is find the partition function for one CHO. To do that we will integrate over phase
space.

Z1 =
1

h

∫
dqdpe−β( p

2

2m
+Kq2

2
) =

1

h

∫
e−

βp2

2m dp

∫
e−

βKq2

2 dq

=
1

h

√
2πm

β

√
2π

βK
=

1

h̄β

√
m

k

Now we have 3N of these so our partition function will be

Z3N =
(1

h̄

√
m

K

)3N

b) To find th heat capacity, all we need to do is find the logarithm of the partition
function and differentiate it with respect to β and then differentiate that with respect to
temperature.

ln(Z) = 3N ln

(
1

h̄β

√
m

K

)
〈E〉 = −3Nh̄β

√
m

K

−1

h̄

√
K

m

1

β2
= 3NkBT

Cv =
∂ 〈E〉
∂T

= 3NkB

Which is what we got for the high temperature limit of the quantum oscillators.
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