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Changing Mass Problem
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Figure 1

There is a box filled with sand moving down a frictionless slope with velocity v. Sand
leaks out of the box moving at a velocity —v. The sand leaks out at a constant rate so our
mass is

m(t) = mg — kt

At t = 0 the box system is of mass mg and the velocity is v(0) = 0. At time ¢, the momentum
of the system is

pi = p(t) = mv
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At time t + dt the momentum is
ps(t +dt) = (m+dm)(v + dv) + dm(v — v)
Rate of change over time of this momentum will then be

(m + dm)(v + dv) + dm(0) — mv

o = F = mgsin(0)

We can ignore the dmdv term because it is very small.

dv dm ,
mo == (E)U + mgsin(0)
dv

(mo — k:t)% = kv + (my — kt)gsin(0)
(o — ky)) = (o — kt)g sin(0)

We can integrate this to find the velocity.

/Ov d((mo - kt)v’) — /0 ((mo — k)t)g Sin(Q))dt/

mo — kt)v = mo—@ tgsin(6
2
(mg — %)tg sin(6)
mo — kt

v(t) =




Oscillations
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Figure 2

We have some potential energy V' (x) and since it behaves nicely, we can taylor expand it at
Ty = Xg-

ov 1 9
V(za) = V(xo) + (24 — 0) v O 5(% — o) o2y +...
We define V(zg) =0, z = z, — 29
ov 1 ,0%V
Vi) =x— —rie—
<x> v 8x o 237 31:2 o
If z( is a local extremum then
o, 0
3:16 ) -
Which leaves us, after ignoring all terms third order or higher
1 ,0%V
V(z) = =2’
(:L‘) 21; 83:2 ts)
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We have two conditions for the stability of the equilibrium.
1. If z( is a stable equilibrium, the second partial derivative will be positive.

o*V
D2 |2
2. If x4 is an unstable equilibrium, the second partial derivative will be negative.
o*V
D12 |y

The total energy of a mass m moving around zy would then be

> 0

<0

1 - 1 - 1
E= imxz +V(z) = zma? + ~ka?

2 2
With 2V
k=—
8:1:2 o
If energy is conserved, we get
dE 1 1
N I S
= 0 2m( T3) + 2k‘( xT)
dE
If £ =0, the object is at rest. otherwise
. kx
T=—-——
m
If we say
=t
" m
Then

x = Acos(wot) + B sin(wyt)

Which is the solution for a simple harmonic oscillator.

General Oscillatory Motion

We want to be able to describe more complicated oscillatory motion than just the simple
harmonic oscillator so we need to add a couple more types of forces.

1. Damping force:
In what we deal with for now, b > 0 to remove impurity.

2. Driving force:
Fy(x) = Fycos(wt)
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General Equation of Motion

Here we are going to try to find the general equation of motion for some type of general
oscillator. A general equation will come of the form

4(t) = @p(t) + 2a(t)

xp is the particular solution for our given driving force and z;, is the solution to the homo-
geneous form of our equation.

mi = —kx + F, + F; = —kx — b + Fy cos(wt)

" .k Fy
¥+ —i+ —x = — cos(wt)
m- - m m

F
i+t + wir = EO cos(wt)

with

Particular Solution
Let’s let '
Fycos(wt) = Re[Fye™']
We can then say that our particular solution is
Ty = Re[Ae™'], A e C

We now want to solve for A
~ . ~ . ~ . F .
A(iw)Qe“"t 4 ,_)/A(Z'w)ezwt 4 ngezwt — <_>ezwt
m

®
A= i — |Ale®
(w3 — w?) +iyw [Ale

w
0= arctan( 27 2)
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V(Wi —w?)? + (yw)?
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