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Figure 1

There is a box filled with sand moving down a frictionless slope with velocity v. Sand
leaks out of the box moving at a velocity −v. The sand leaks out at a constant rate so our
mass is

m(t) = m0 − kt
At t = 0 the box system is of mass m0 and the velocity is v(0) = 0. At time t, the momentum
of the system is

pi = p(t) = mv
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At time t+ dt the momentum is

pf (t+ dt) = (m+ dm)(v + dv) + dm(v − v)

Rate of change over time of this momentum will then be

(m+ dm)(v + dv) + dm(0)−mv
dt

= F = mg sin(θ)

We can ignore the dmdv term because it is very small.

m
dv

dt
= −

(dm
dt

)
v +mg sin(θ)

(m0 − kt)
dv

dt
= kv + (m0 − kt)g sin(θ)

d

dt
((m0 − ky)) = (m0 − kt)g sin(θ)

We can integrate this to find the velocity.∫ v

0

d((m0 − kt)v′) =

∫ t

0

((m0 − kt)g sin(θ))dt′

(m0 − kt)v = (m0 −
kt

2
)tg sin(θ)

v(t) =
(m0 − kt

2
)tg sin(θ)

m0 − kt
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Oscillations
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Figure 2

We have some potential energy V (x) and since it behaves nicely, we can taylor expand it at
xa = x0.

V (xa) = V (x0) + (xa − x0)
∣∣∣
x0

∂V

∂xa
+

1

2
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∂2V
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+ . . .

We define V (x0) = 0, x = xa − x0

V (x) = x
∂V

∂x
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+
1

2
x2
∂2V

∂x2
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+ . . .

If x0 is a local extremum then
∂V

∂x

∣∣∣
x0

= 0

Which leaves us, after ignoring all terms third order or higher

V (x) =
1

2
x2
∂2V
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∣∣∣
x0
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We have two conditions for the stability of the equilibrium.
1. If x0 is a stable equilibrium, the second partial derivative will be positive.

∂2V

∂x2

∣∣∣
x0
> 0

2. If x0 is an unstable equilibrium, the second partial derivative will be negative.

∂2V

∂x2

∣∣∣
x0
< 0

The total energy of a mass m moving around x0 would then be

E =
1

2
mẋ2 + V (x) =

1

2
mẋ2 +

1

2
kx2

With

k =
∂2V

∂x2

∣∣∣
x0

If energy is conserved, we get

dE

dt
= 0 =

1

2
m(2ẋẍ) +

1

2
k(2xẋ)

dE

dt
= ẋ(mẍ+ kx) = 0

If ẋ = 0, the object is at rest. otherwise

ẍ = −kx
m

If we say

ω2
0 =

k

m
Then

x = A cos(ω0t) +B sin(ω0t)

Which is the solution for a simple harmonic oscillator.

General Oscillatory Motion

We want to be able to describe more complicated oscillatory motion than just the simple
harmonic oscillator so we need to add a couple more types of forces.

1. Damping force:
Fb(x) = −bẋ

In what we deal with for now, b > 0 to remove impurity.
2. Driving force:

Fd(x) = F0 cos(ωt)
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General Equation of Motion

Here we are going to try to find the general equation of motion for some type of general
oscillator. A general equation will come of the form

xg(t) = xp(t) + xh(t)

xp is the particular solution for our given driving force and xh is the solution to the homo-
geneous form of our equation.

mẍ = −kx+ Fb + Fd = −kx− bẋ+ F0 cos(ωt)

ẍ+
b

m
ẋ+

k

m
x =

F0

m
cos(ωt)

ẍ+ γẋ+ ω2
0x =

F0

m
cos(ωt)

with

γ =
b

m

ω2
0 =

k

m

Particular Solution

Let’s let
F0 cos(ωt) = Re[F0e

iωt]

We can then say that our particular solution is

xp = Re[Ãeiωt], Ã ∈ C

We now want to solve for Ã

Ã(iω)2eiωt + γÃ(iω)eiωt + ω2
0Ãe

iωt =
(F
m

)
eiωt

Ã =

(
F0

m

)
(ω2

0 − ω2) + iγω
= |Ã|eiδ

δ = arctan

(
γω

ω2
0 − ω2

)

|Ã| =

(
F0

m

)
√

(ω2
0 − ω2)2 + (γω)2
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