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Problem 1

An undamped harmonic oscillator with mass m is driven by a force F (t) =
F0 sin(ωt), F0 being a constant, which is switched on at time t = 0.

a) Find the response function x(t) for t > 0 with the initial conditions x(0) = 0
and ẋ(0) = 0.

b) Find x(t) for ω = ω0 by taking the limit ω → ω0 in the answer for part a.
c) Sketch your result for x(t).

Solution

a) We start with our differential equation

ẍ = ω2
0x =

F0

m
sin(ωt)

The solution to the homogeneous equation will be in the form

xh = A sin(ω0t) +B cos(ω0t)

We will have problems with this equation if ω = ω0 because the simplest ansatz will be
linearly dependent on the homogeneous solution. In order to find a solution, we will need
to split up our solutions into one where the driving force is resonant with the oscillator and
one where the driving force is not resonant with the oscillator. Let’s start where ω 6= ω0

ansatz = x = A sin(ωt) +B cos(ωt)

ẋ = Aω cos(ωt)−Bω sin(ωt)

ẍ = −Aω2 sin(ωt)−Bω2 cos(ωt)
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Plugging this all into our main equation we get

−Aω2 sin(ωt)−Bω2 cos(ωt) + ω2
0(A sin(ωt) +B cos(ωt)) =

F0

m
sin(ωt)

This gives us

A =
F0

m(ω2
0 − ω2)

B = 0

So the particular solution we have for a non-resonant oscillator is

x1 =
F0

m(ω2
0 − ω2)

sin(ωt) + A sin(ω0t) +B cos(ω0t)

Using our initial conditions we get

x1(0) = 0 = B

ẋ1 =
F0ω

m(ω2
0 − ω2)

cos(ωt) + Aω0 cos(ω0t)

ẋ1(0) = 0 =
F0ω

m(ω2
0 − ω2)

+ Aω0

A = − F0ω

mω0(ω2
0 − ω2)

So the solution for the system not at resonance is

x1 =
F0

m(ω2
0 − ω2)

sin(ωt)− F0ω

mω0(ω2
0 − ω2)

sin(ω0t)

We still want to find out what happens if ω = ω0, so we will have to use a trick to find
a solution that is linearly independent to the homogeneous solution. We can do this by
throwing in a t.

x2 = xh + xh

ẋ2 = ẋh + xh + tẋh

ẍ2 = ẍh + ẋh + ẋh + tẍh = 2ẋh + ẍh + tẍh

Plugging this into our main equation gives us

2ẋh + ẍh + tẍh + ω2
0(xh + txh) = 2ẋh
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We were able to reduce it to this as the homogeneous solution is equal to zero, and we have
multiple copies of it in our expression. So now we have

2ẋh = 2Aω cos(ωt)− 2Bω sin(ωt) =
F0

m
sin(ωt)

This gives us
A = 0

B = − F0

2mω

So the solution at resonance is

x2 = − F0t

2mω
cos(ωt) + A sin(ωt) +B cos(ωt)

Plugging in our initial conditions gives

x2(0) = 0 = B

ẋ2 = − F0

2mω
cos(ωt) +

F0ωt

2mω
sin(ωt) + Aω cos(ωt)

ẋ2(0) = 0 = Aω − F0

2mω

A =
F0

2mω2

So the solution at resonance is

x2 = − F0t

2mω
cos(ωt) +

F0

2mω2
sin(ωt)

b) The solution is what we found at the end of part a.

x = − F0t

2mω
cos(ωt) +

F0

2mω2
sin(ωt)

c)
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Figure 1: Position vs time for the resonant solution with coefficients set to 1.

4



Figure 2: Position vs time for the non-resonant solution with the driving force having half
the frequency of the natural frequency.

Problem 2

A heavy particle of mass m is hung at the lower end of a light vertical elastic
spring of natural length l0 and modulus (spring constant) 2mg, where g is the
acceleration due to gravity. At time t = 0 the system is in the equilibrium. Then
the upper end of the spring is made to execute vertical oscillation so that its
downward displacement at time t is a sin(ωt), where a is a constant and ω2 = 2g/l0.
Find the displacement of the particle at this instant.

Solution

This problem runs very similarly to the previous problem. Our differential equation will be

ẍ+
2g

m
x = a sin(ωt) = ẍ+ ω2

0x
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with

ω2
0 =

2g

m

The homogeneous solution is of the form

xh = A sin(ω0t) +B cos(ω0t)

Using what we found in problem 1, the particular solution is

xp =
a

ω2
0 − ω2

We can then solve for our general solution’s coefficients

x =
a

ω2
0

sin(ωt) + A sin(ω0t) +B cos(ω0t)

x(0) = 0 = B

ẋ =
aω

ω2
0 − ω2

cos(ωt) + Aω0 cos(ω0t)

ẋ(0) = 0 =
aω

ω2
0

+ Aω0

A = − aω

ω0(ω2
0 − ω2)

So the displacement function of our mass is

x =
a

ω2
0 − ω2

sin(ωt)− aω

ω0(ω2
0 − ω2)

sin(ω0t)

Problem 3

P and Q are two particles, each with mass m, attached to the two ends of a light
inextensible string of length 2l, which passes through a small smooth hole O in a
smooth horizontal table. P is free to slide on the table, Q hangs freely below the
hole O. Initially OQ is of length l, and P is projected from rest, at right angle to
OP with speed

√
8gl/3. Show that in the ensuing motion Q will just reach the

hole.
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Solution

At first we want to look at the change in speed of P. Angular momentum should be conserved,
so

Li = Lf = mvl = mv′(2l)

v′ =
1

2

√
8gl

3

The change in kinetic energy, assuming no loss, will be equal to the change in gravitational
potential of the raising Q.

1

2
m(v2 − v′2) = mgh

h =
1

2g

(8gl

3
− 2gl

3

)
= l

So Q will reach the hole.

Problem 4

A uniform rod AB of mass M and length 2a lies at rest on a smooth horizontal
table. An impulse J is applied at A in the plane of the table and perpendicular
to the rod. Determine the velocity of the centroid and the angular velocity of
the rod.

Solution

Due to the conservation of linear momentum, we have

J = ∆p = Mv

v =
J

M

The rod will also start to rotate around its center, and using angular momentum conservation

∆L = Ja = Iω =
1

3
Mωa2

ω =
3J

Ma
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Problem 5

A perfectly rough circular hoop of radius a rolls on a horizontal table with speed
v towards and normal to the edge of the table. What is the value of the angle θ
that the hoop can roll down the step without losing contact. Here θ is the angle
between the vertical and the line connecting the contact point to the center of
the hoop at the corner of the step.

Solution

As the hoop travels off the step, gravity causes some torque on the hoop, so we have some
change in the speed of the hoop, as well as the change in gravitational potential energy.

1

2
mv2 +

1

2
Iω2 +mga =

1

2
mv21 +

1

2
Iω2

1 +mg cos(θ)

Since the moment of inertia for the hoop is I = ma2, we can rewrite this expression with
only regards to linear velocity.

1

2
mv2 +

1

2

ma2v2

a2
+mga =

1

2
mv21 +

1

2

ma2v21
a2

+mga cos(θ)

mv2 +mga = mv21 +mga cos(θ)

When the hoop loses contact with the step, the normal force is zero, and the only force we
have acting on the hoop is gravity.

mg cos(θ) =
mv21
a

v1 =
√
ag cos(θ)

Plugging this into the energy relation we found earlier gives us

mv2 +mga = mag cos(θ) +mg cos(θ)

cos(θ) =
v2

2ag
+

1

2

θ = arccos

(
v2

2ag
+

1

2

)
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Problem 6

A ball is projected up from a point O of a plane inclined at an angle α to the
horizontal. The direction of the projection makes an angle β with the inclined
surface, and the path lies in a vertical plane through a line of greatest slope. If
the ball returns to O at the n-th impact, shown that

(1− er) cot(α) cot(β) = 1− enr
where er is called the coefficient of restitution between the ball and the plane.
In general, er is defined as the ratio of the final relative velocity to the initial
relative velocity between two objects after they collide. Its value is between 0
(inelastic collision) and 1 (elastic collision).

Solution

We can start by rotating our reference frame by α to simplify our equations of motion. Our
new coordinates are

v‖ = v cos(β)

v⊥ = v sin(β)

g‖ = g sin(α)

g⊥ = g cos(α)

Let’s find the time the ball hits the inclined plane for the first time.

∆y = vt sin(β)− 1

2
gt2 cos(α) = 0

t =
2v sin(β)

g cos(α)

After every bounce, some energy will be lost as long as the collision isn’t totally elastic. If
we summed up all n bounces, we get

ttot =
2v sin(β)

g cos(α)

n∑
i=0

eir =
2v sin(β)

g cos(α)

(1− enr )

(1− er)

Now, we want to find the time it takes for the ball to return home, so we look at the
parallel kinematics. We can do this all in one go because the parallel component of speed
is unaffected by the loss in energy due to the collision, so there is no need to reduce each
iterative bounce’s parallel speed.

∆x = vt cos(β)− 1

2
gt2 sin(α) = 0
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ttot =
2v cos(β)

g sin(α)

We can now equate our two total times and get

2v cos(β)

g sin(α)
=

2v sin(β)(1− enr )

g cos(α)(1− er)

or
(1− er) cot(α) cot(β) = 1− enr
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