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Problem 1

As shown in Figure 1, a pendulum is suspended from the cusp of a cycloid cut
in a rigid support. The path described by the bob of the pendulum is cycloidal:

x = a(φ− sin(φ)) , y = a(cos(φ)− 1)

where a is a constant such that the length of the pendulum l = 4a, and φ is the
angle of rotation of the circle generating the cycloid. Show that the oscillation
is exactly isochronous with a frequency ω0 =

√
g/l, independent of the ampli-

tude. Here, isochronous means the period of the pendulum is independent of
the amplitude (or total energy).

Solution

We want to find the path the bob takes over time, and to do that we can use the pythagorean
theorem

ds2 = dx2 + dy2

with
dx = a(1− cos(φ))dφ

dy = −a sin(φ)dφ

Plugging this in and solving for ds we get

ds2 = (a2(1− cos(φ))2 + a2 sin2(φ))dφ2

= a2(1− 2 cos(φ) + cos2(φ) + sin2(φ))dφ2

= 2a2(1− cos(φ))dφ2
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= 4a2 sin2

(
φ

2

)
dφ2

ds = 2a sin

(
φ

2

)
dφ

We can find our velocity by differentiating this with respect to time.

v =
ds

dt
= 2a sin

(
φ

2

)
dφ

dt
= −4a

d

dt
(cos

(
φ

2

)
The acceleration will then be

v̇ = −4a
d2

dt2
(cos

(
φ

2

)
)

Now gravity isn’t pulling at the pendulum bob parallel to the path it is traveling. It is actually
pulling the bob at some angle, and we can find its proportional strength by differentiating
the vertical component of the path by the entire path.

dy

ds
=
−a sin(φ)

2a sin()φ
2
)

= −1

2

2 sin
(
φ
2

)
cos
(
φ
2

)
sin
(
φ
2

) = − cos

(
φ

2

)
We can then pull up our force equation and plug everything we found into it.

F = mv̇ = mg cos

(
φ

2

)
= −4am

d2

dt2
(cos

(
φ

2

)
)

Rearranging, this gives us

d2

dt2
(cos

(
φ

2

)
) +

g

4a
cos

(
φ

2

)
= 0

Let η = cos
(
φ
2

)
and using what we were given for ω0 =

√
g
4a

we get our standard differential
equation for oscillatory motion

η̈ + ω2
0η = 0

And from this we can see that the oscillation is isochronous.

Problem 2

One end of a spring with force constant k and negligible mass is hanging from a
fixed support. A particle of mass m is attached at rest at the other end of the
spring. At t = 0, a constant downward force F is applied to the mass and acts for
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a time t0. Show that, after the force is removed, the displacement of the mass
from its equilibrium position (x = x0) is

x = x0 =
F

k
[cos(ω0(t− t0))− cos(ω0t)]

where ω2
0 = k/m.

Solution

Our force equation is
Fnet = mẍ = −kx

Rearranging, we get

ẍ+
k

m
x = 0

This is a differential equation has solution

x = A cos(ω0t) +B sin(ω0t)

with ω2
0 = k

m
. The sine solution can be trashed because we know at t = 0 there will be some

displacement so all we need is the cosine. At t = 0 the force we have applied is F , which
comes in the form of a spring force.

F = −kx

Rearranging this we get

x = −F
k

= A cos(ω0(0)) = A

Having solved for A, we now have our position equation

x(t) = −F
k

cos(ω0t)

At some previous time t0 when the force was applied, the position will be

x(t− t0) = −F
k

cos(ω0(t− t0))

This difference in position after the force is applied is then

x(t)− x(t− t0) =
F

k
(cos(ω0(t− t0))− cos(ω0t))

Which is exactly what we are looking for.
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Problem 3

One end of a massless spring with natural length a and spring constant k is
attached to a horizontal table. The spring can rotate freely on the table without
friction. A point mass m connected to the other end of the spring slides without
friction on the table. The net force on the mass is a central force F (r) = −k(r−a).

a) Find and sketch both the potential energy V (r) and the effective potential
Veff (r).

b) What is the angular velocity ω0 required for a circular orbit with radius
r0?

c) Derive the frequency for small oscillation ω about the circular orbit with
r0.

Solution

a) We can find the potential energy V by integrating the force over the distance from the
origin since it is spherically symmetric.

V = −
∫ r

a

(−k(r′ − a))dr′ =
1

2
k(r − a)2

This is a pretty nice parabola. We can find the effective by adding an extra term

Veff = V +
l2

2mr2
=

1

2
k(r − a)2 +

l2

2mr2

Graphing these two together gives something like this.

Ve�

V

r

E

Figure 1
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b) To find the angular velocity, we just need to equate the central force we have with
the centripetal force.

k(r0 − a) = mω2
0r0

ω0 = ±

√
k(r0 − a)

mr0

c) We are going to have to taylor expan our effective potential

Veff = V (r0) + (r − r0)
∂V

∂r

∣∣∣
r0

+
1

2
(r − r0)2

∂2V

∂r2

∣∣∣
r0

+ . . .

The first derivative of the potential must be zero and the second derivative of our potential
is

∂2V

∂r2
= k +

3l2

mr4

This gives us a potential of

Veff =
1

2
k(r0 − a)2 +

l2

2mr20
+

1

2
(r − r0)2(k +

3l2

mr40
)

=
1

2
k((r0 − a)2 + (r − r0)2) +

l2

2mr20
(1 +

3(r − r0)2

r20
)

Since the first derivative is zero

k(r0 − a) =
l2

mr3

kr0(r0 − a)

2
=

l2

2mr20

This allows us to rewrite the potential as

Veff =
1

2
k((r0 − a)2 + (r − r0)2) +

kr0(r0 − a)

2
(1 +

3(r − r0)2

r20
)

=
1

2
k((r − r0)2 + (r0 − a)2 +

3(r − r0)2

r0
)

=
1

2
k(r − r0)2(1 +

3(r0 − a)

r0
)

We want to solve for k and to do that we just need to set our central force to equal the
centripetal force.

k(r0 − a) = mω2
0r
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k =
mω2

0r0
r0 − a

Plugging this into what we found previously

Veff =
1

2

mω2
0r0

r0 − a
(r − r0)2(1 +

3(r0 − a)

r0
)

Looking at the second term we can simplify

3mω2
0(r − r0)2

2
=

3k(r0 − a)(r − r0)2

2r0

From this we get our frequency we were looking for

ω =

√
3k(r0 − a)

mr0

Problem 4

A damped linear oscillator, originally at rest in its equilibrium position x = 0, is
subjected to a force given by

F (t)

m
=


0, t < 0

a× t

τ
, 0 < t < τ

a, t > τ

where a is a constant. Find the response function x(t). By allowing τ approaches
zero, show that the solution becomes that for a step function.

Solution

A damped oscillator will have a differential equation of the form

ẍ+ 2βẋω2
0x = F (t)

The solution of the homogeneous version of this equation is

x = e−βt(A cos(ω1t) +B sin(ω1t))

with ω1 =
√
ω2
0 − β2. Looking at 0 < t < τ , we can guess the particular solution is of the

form
xp = Ct+D
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Plugging this into our differential equation we find

2βC + ω2
0Ct+Dω2

0 =
at

τ

Combining similar terms we find that

C =
a

ω2
0

D = −2βa

ω4
0τ

Adding this to our homogeneous solution gives us

x = e−βt(A cos(ω1t) +B sin(ω1t)) +
at

ω2
0τ
− 2βa

ω4
0

Differentiating with respect to time gives us

ẋ = −βe−βt(A cos(ω1t) +B sin(ω1t)) + e−βt(−Aω1 sin(ω1t) +Bω1 cos(ω1t)) +
a

ω2
0τ

With initial conditions of x = 0, ẋ = 0 we get

x(0) = A− 2βa

ω4
0τ

= 0

ẋ(0) = −βA+Bω1 +
a

ω4
0

This gives us

A =
2βa

ω4
0τ

B =
2β2a

ω1ω4
0τ
− a

ω2
0ω1τ

Plugging this into our position function we have

x(t) = e−βt
(2βa

ω4
0τ

cos(ω1t) +
( 2β2a

ω1ω4
0τ
− a

ω1ω2
0τ

)
sin(ω1t)

)
+

at

ω2
0τ
− 2βa

ω4
0

For t > τ we can rewrite the force as

F =
at

τ
− a(t− τ)

τ

7



Which will have basically the same solution as the previous part except won’t have the
exponential decay and has a phase shift in the trigonometric functions.

x = e−βt
2βa

ω4
0τ

(cos(ω1t)−e−βt cos(ω1(t− τ))+
( 2β2a

ω1ω4
0τ
− a

ω1ω2
0τ

)
e−βt(sin(ω1t)−eβt sin(ω1(t− τ)))+

a

ω2
0

We can start taylor expanding our transcendental functions if τ gets arbitrarily close to zero
which gives us

x =
2βa

ω4
0τ

(cos(ω1t)− (1 + βτ)(cos(ω1t+ ω1τ sin(ω1t)))

+
( 2β2a

ω1ω4
0τ
− a

ω1ω2
0τ

)
eβt(sin(ω1t− (1 + βτ)(sin(ω1t)− ω1τ cos(ω1t))) +

a

ω2
0

=
a

ω2
0

− a

ω2
0

e−βt cos(ω1t)−
(2βω1a

ω4
0

− βa

ω1ω2
0

+
2β3a

ω1ω4
0

)
e−βt sin(ω1t)

=
a

ω2
0

− a

ω2
0

e−βt cos(ω1t)−
(2β(ω2

0 − β2)a− βaω2
0 + 2β3a

ω1ω4
0

)
e−βt sin(ω1t)

=
a

ω2
0

− a

ω2
0

e−βt cos(ω1t)−
βa

ω1ω2
0

e−βt sin(ω1t)

Which is the response of a step function.

Problem 5

A car with a mass 1000 kg settles 1 cm closer to the road for every additional
100 kg of passengers. This fact allows us to determine the ’spring’ constant k of
the car. Now the car is driven with a constant horizontal component of speed
of 20 km/h over a washboard road with sinusoidal bumps. The amplitude and
wavelength of the sine curve are 5.0 cm and 20 cm respectively. The separation
between the front and back wheels is 2.4 m. Find the amplitude of oscillation of
the car, assuming it moves vertically as an undamped driven harmonic oscillator.
Neglect the mass of the wheels and springs. Assume the wheels are always in
contact with the road.

Solution

We can start with our force equation for the system

F = mÿ = α cos(γt)−mg + ky

ÿ = α cos(γt)− g + ω2
0y
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with α being the amplitude of the road, ω2
0 = k/m and γ being the frequency of the road.

α = 0.05k

γ = 2πf =
2πv

λ
= 175

Our driving force is sinusoidal and vertically shifted so our guess for a particular solution
will be something of that form.

yp = A+B cos(γt) + C sin(γt)

ÿp = −Bγ2 cos(γt)− Cγ2 sin(γt)

Plugging this into our force equation gives us

−Bγ2 cos(γt)− Cγ2 sin(γt) = α cos(γt)− g + ω2
0(A+B cos(γt) + C sin(γt))

Looking at similar terms, we get

A =
g

ω2
0

B = − α

ω2
0 + γ2

C = 0

This gives us

yp =
g

ω2
0

− α

ω2
0 + γ2

cos(γt)

Our answer will then be
Amplitude = L =

α

ω2
0 + γ2

We can find k to be
k − mg

∆x
= 98100

Which ultimately gives us the amplitude to be

L = 1.2 × 10−4 meters

Problem 6

Ehrenfest’s famous Principle of Adiabatic Invariance states that the ratio of the
energy of an oscillatory motion to the frequency stays constant. This principle
can be demonstrated with a simple pendulum. Consider a simple pendulum exe-
cuting small-amplitude oscillations. The string with negligible mass is shortened
an amount ∆l very slowly, so that the change in amplitude from one oscillation
to the next is negligible. Show that under these conditions, the ratio of the
energy to the frequency remains constant.
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Solution

The tension on the bob of the pendulum is

T = mg(1− cos(θ)) = 2mg sin2

(
θ

2

)
=
mgθ2

2

Since we are dealing with small angles, the sine function was approximated to first order.
The energy of our system can be described with

E =
mglφ2

4

where we swapped our θ with φ, the maximum angle from the pendulum bob to the vertical.
From this we can see that

dT =
E

2l
dl

The frequency is

ω =

√
g

l

We can differentiate it to find

dω = −1

2

√
g
dl

l
3
2

dω

ω
= −1

2

dl

l

From this we find
dE

E
= −dω

ω

Which is what we are looking for.
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