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Problem 1

(Taylor 3.11, 3.13) A rocket resting on the ground takes off vertically in a grav-
itational field g.

a) Show that the equation

mv̇ = −ṁvex −mg

where m is the mass of the rocket at time t, ṁ is the rate at which the rocket is
ejecting fuel, and vex is the speed of the ejected mass relative to the rocket.

b) Assuming ṁ = k with k being positive and constant such that m = m0 − kt,
determine the speed of the rocket v as a function of time.

c) Determine the height of the rocket as a function of time.
d) Suppose the intial mass of the rocket is 2× 106 kg, the final mass after two

minutes is 1× 106 kg, the exhaust speed vex is 3 km/s, what is the height of the
rocket after two minutes in flight?

Solution a) At first, let’s look at the momentum of our rocket system, ignoring some
outside force. Our momentum at some time t will be

p(t) = mv

At a later time, the mass and the speed of the rocket will change, and we will have to take
into account the fuel’s momentum as it decouples from the rocket. This gives us

p(t+ dt) = (m+ dm)(v + dv) − dm(v − vex)

= mv +mdv + vdm+ dmdv − vdm+ dmvex
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dmdv is really small compared to everything else, and can be considered to be zero, which
let’s use simplify this equation to

p(t+ dt) = mv +mdv + vexdm

Our change of momentum will then be

dp = p(t+ dt) − p(t) = mv +mdv + vexdm−mv = mdv + vexdm

This is where our external force comes in. Without an external force acting our rocket, this
change in momentum would be zero, but since our external force is not zero, our change in
momentum will be

dp =

∫
Fgdt = mdv + vexdm

Now all we have to do is differentiate everything in respect to t to get our desired equation.

dp

dt
= m

dv

dt
+ vex

dm

dt
= −mg

mv̇ = −ṁvex −mg

b) Plugging in our givens into our previous equation gives

(m0 − kt)v̇ = −kvex − (m0 − kt)g

v̇ = − kvex
m0 − kt

− g

We want to solve for v so let’s integrate both sides in respect to t.

v = vex ln

(
m0

m0 − kt

)
− gt

c) To find our height over time, we will need to integrate our speed function from the
previous part in respect to time. First, let’s manipulate the speed function in a way that is
easier to integrate without making mistakes.

v = vex ln

(
m0

m0 − kt

)
− gt = vex ln

(
1

1 − kt
m0

)
− gt

= −vex ln

(
1 − kt

m0

)
− gt

Now we are ready to integrate.

h(t) =

∫
vdt = −

∫
(vex ln

(
1 − kt′

m0

)
− gt′)dt′

2



=
vexm0

k
(1 − kt′

m0

)(ln

(
1 − kt′

m0

)
− 1)

∣∣∣t
0
− 1

2
gt′2
∣∣∣t
0

=
vexm0

k
(1 − kt

m0

)(ln

(
1 − kt

m0

)
− 1) − vexm0

k
(−1) − 1

2
gt2

=
vexm0

k

( m
m0

)
(ln

(
m

m0

)
− 1) +

vexm0

k
− 1

2
gt2

=
vexm

k
ln

(
m

m0

)
− vexm

k
+
vexm0

k
− 1

2
gt2

and since m0 −m = kt

h(t) =
vexm

k
ln

(
m

m0

)
+ vext−

1

2
gt2

Or to make the contribution of each piece more explicit

h(t) = vext−
vexm

k
ln
(m0

m

)
− 1

2
gt2

d) Using k = m0

t
we find that our height equation is

h(t) = vext−
vexmt

m0 −m
ln
(m0

m

)
− 1

2
gt2

Plugging in our give values this gives us a height of

h(2 minutes) = 4× 104 m

Problem 2

(Taylor 3.34) A juggler is juggling a uniform rod one end of which is coated in
tar and burning. He is holding the rod by the opposite end and throws it up so
that, at the moment of release, it is horizontal, its CM is traveling vertically up
at speed v0 and it is rotating with angular velocity ω0. To catch it, he wants to
arrange that when it returns to his hand it will have made an integer number
of complete rotations. What should v0 be, if the rod is to have made exactly n
rotations when it returns to his hand?
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Solution At first. let’s see at what time the center of mass of the torch returns to the
juggler.

h(t) = v0t−
1

2
gt2

The torch returns to the juggler when the height is zero.

0 = v0t−
1

2
gt2

v0t =
1

2
gt2

t =
2v0

g

The angular momentum of the torch is constant since the only force acting on the rod is
gravity, which acts on the center of mass of the torch. This means our angular velocity is
constant. The frequency of rotations will be

f =
ω0

2π

This will give us the number of each full rotation

n = ft =
(ω0

2π

)(2v0

g

)
=
ω0v0

πg

We can then solve this for v0.

v0 =
ngπ

ω0

Problem 3

(Taylor 3.35) Consider a uniform solid disk of mass M and radius R, rolling
without slipping down an incline which is at angle γ to the horizontal. The
instantaneous point of contact between the disk and the incline is called P .

a) Draw a free-body diagram, showing all forces on the disk.
b) Find the linear acceleration v̇ of the disk by applying the result L̇ = Γext

for rotation about P . (Remember that L = Iω and the moment of inertia for
rotation about a point on the circumference is 3

2
MR2. The condition that the

disk not slip is that v = Rω and hence v̇ = Rω̇.)
c) Derive the same result by applying L̇ = Γext to the rotation about the CM.

(In this case you will find there is an extra unknown, the force of friction. You
can eliminate this by applying Newton’s second law to the motion of the CM.
The moment of inertia for rotation about the CM is 1

2
MR2.)
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Solution a)

γ

FN

mgsinγ

mgcosγ

Ff

In this diagram, the gravitational force is broken into its components parallel to the
incline and perpendicular to the incline.

b) Since the disk isn’t slipping, we know the frictional force and the parallel component
of the gravitational force are equal.

τ = L̇ = r× Fg⊥

Looking only at magnitudes we get

τ = RMg sin(γ)

Now, we also know

L̇ = Iω̇ =
3

2
MR2ω̇ = RMg sin(γ)

Solving for ω̇ we get

ω̇ =
2g sin(γ)

3R

We can convert this to linear acceleration using

v̇ = Rω̇ =
2g sin(γ)

3

c) The sum of the force acting on the CM is∑
F = Mg sin(γ) −Mv̇
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This force will be the force acting on our disk. So let’s plug it into our torque equation and
see what we get.

τ = R(Mg sin(γ) −Mv̇) = Iω̇ =
1

2
MR2ω̇

RMg sin(γ) =
1

2
MRv̇ +RMv̇ =

3

2
MRv̇

v̇ =
2g sin(γ)

3

Which is what we were after.

Problem 4

(Taylor 4.4) A particle of mass m is moving on a frictionless, horizontal table
and is attached to a massless string, whose other end passes through a hole in
the table, where I am holding it. Initially the particle is moving in a circle of
radius r0 with angular velocity ω0, but I now pull the string down through the
hole until a length r remains between the hole and the particle.

a) What is the particle’s angular velocity now?
b) Assuming that I pull the string so slowly that we can approximate the

particle’s path by a circle of slowly shrinking radius, calculate the work I did
pulling the string.

c) Compare your answer to part b) with the particle’s gain in kinetic energy.

Solution a) Angular momentum will be conserved. The angular momentum will be

L = Iω = mr2
0ω0 = mr2ω

Solving for ω we get

ω = ω0

(r0

r

)2

b) The centripetal force will be causing the work which is described by

a =
v2

r
= rω2

Using the angular velocity we found in the previous part, our force creating the work will be

F = mrω2 = mrω2
0

(r0

r

)4

=
mω2

0r
4
0

r3
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Let’s integrate this force with respect to the changing radius.

W =

∫ r

r0

F (−dr′) = −
∫ r

r0

mω2
0r

4
0

r′3
dr′ =

mω2
0r

4
0

2

( 1

r2

)∣∣∣r
r0

W =
mω2

0r
4
0

2

( 1

r2
− 1

r2
0

)
c) The change in kinetic energy will be

∆T =
1

2
Iω2 − 1

2
I0ω

2
0 =

1

2
mr2ω2

0

(r0

r

)4

− 1

2
mr2

0ω
2

=
mω2

0r
4
0

2

( 1

r2
− 1

r2
0

)
Which is exactly what we found in the previous part.

Problem 5

(Taylor 4.8) Consider a small frictionless puck perched at the top of a fixed
sphere of radius R. If the puck is given a tiny nudge so that it begins to slide
down, through what vertical height will it descend before it leaves the surface
of the sphere? [Hint: Use conservation of energy to find the puck’s speed as a
function of its height, then use Newton’s second law to find the normal force of
the sphere on the puck. At what value of this normal force does the puck leave
the sphere?]

Solution As suggested, let’s check out our energy conservation relations. Some of the
gravitational potential energy of the puck at the tippy-top of the sphere will be transformed
into kinetic energy as it falls off the sphere.

2Rmg =
1

2
mv2 +mgR(1 + cos(θ))

1

2
mv2 = 2Rmg −mgR(1 + cos(θ))

v2 = 4Rg − 2gR(1 + cos(θ))

That should be good enough for now. Let’s take a crack at Newton’s second law.

F = ma = −mv
2

R
= FN −mg cos(θ)
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The normal force will be zero when the puck takes off, so after making that piece disappear,
we can solve for the angle.

−mg cos(θ) = −mv
2

R

cos(θ) =
v2

Rg

Plugging in our speed from the energy relations gives us

cos(θ) = 4 − 2 − 2 cos(θ)

3 cos(θ) = 2

cos(θ) =
2

3

Our vertical displacement can be determined with

h = R(1 − cos(θ)) =
R

3

Problem 6

(Taylor 4.24) An infinitely long, uniform rod of mass µ per unit length is situated
on the z axis.

a) Calculate the gravitational force F on a point mass m at a distance ρ from
the z axis. (The gravitational force between two point masses is given in problem
4.21.)

b) Rewrite F in terms of the rectangular coordinates (x, y, z) of the point and
verify that ∇× F = 0.

c) Show that ∇× F = 0 using the expression for ∇× F in cylindrical polar
coordinates given inside the back cover.

d) Find the corresponding potential energy U .

Solution a) We start our journey with our equation for gravitational force.

F = −GmM
r2

We need to swap out one of those masses with something reminiscent of our uniform rod.
We want the closest distance to be directly from our reference point, we want it to increase
as the angle from our reference point increase towards the top of the rod, and we want it
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to decrease as the angle from our reference point decreases towards the bottom of the rod.
This gives us

M = µ cos(θ)dz

as our missing puzzle piece. ρ will be our distance from some point in the xy plane towards
the rod. Our force equation will then look like

dF = −Gmµ cos(θ)dz

r2

That cosine can be related to r and ρ by the following relation

cos(θ) =
ρ

r

Plugging this into our force equation gives us

dF = −Gmµρdz
r3

= −G mµρdz

(ρ2 + z2)
3
2

To integrate this we need to go back to our triangles and make some substitutions. Our
substitutions will be

z = ρ tan(u)

dz = ρ sec2(u)du

Plugging these in we get

dF = −G mµρ2 sec2(u)du

(ρ2 + ρ2 tan2(u))
3
2

= −G mµ sec2(u)du

ρ(1 + tan2(u))
3
2

= −Gmµ sec2(u)du

ρ sec3(u)
= −Gmµ cos(u)du

ρ

We are now ready to integrate. Since we made the trig substitution, our new bounds will be
−π

2
< u < π

2
.

F = −Gmµ
ρ

∫ π
2

−π
2

cos(u)du = −Gmµ
ρ

(sin(u))
∣∣∣π2
−π

2

F = −2G
mµ

ρ

This force will be in the ρ direction so in finality, the force is

F = −2G
mµ

ρ
ρ̂
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b) This force expressed in cartesian coordinates will be

F = −2G
mµ√
x2 + y2

(
x√

x2 + y2
x̂+

y√
x2 + y2

ŷ)

= −2Gmµ(
xx̂+ yŷ

x2 + y2
)

Now we can find the curl of the force

∇× F = x̂
(∂Fz
∂y

− ∂Fy
∂z

)
+ ŷ

(∂Fx
∂z

− ∂Fz
∂x

)
+ ẑ
(∂Fy
∂x

− ∂Fx
∂y

)
There is no z dependence so all the z partial derivatives vanish and since there is no z
component all terms with Fz vanish. This leaves us only with our third term, but that
vanishes because Fx(y) is Fy(x) with variables swapped so those terms must cancel. This
leaves us with

∇× F = x̂(0) + ŷ(0) + ẑ(0) = 0

c) The equation in the book for curl in cylindrical coordinates is

∇× F = ρ̂
(1

ρ

∂Fz
∂φ

− ∂Fφ
∂z

)
+ φ̂

(∂Fρ
∂z

− ∂Fz
∂ρ

)
+ ẑ

1

ρ

(∂(ρFφ)

∂ρ
− ∂Fρ

∂φ

)
Like before we can reason these terms away. There is only a rho component so all other
differentials in regards to other variables must vanish. Similarly, all terms that don’t include
Fρ will also vanish. This leaves us with

∇× F = ρ̂(0) + φ̂(0) + ẑ(0) = 0

d) The potential energy can be found by integrating our force equation using a line
integral of the form

U = −
∫

Γ

F · dr

This integral will be easiest in cylindrical coordinates so let’s get to it

U(ρ) = 2Gmµ

∫ ρ

ρ0

dρ′

ρ′

There is no loss of energy moving perpendicular to the force so the other degrees of freedom
don’t need to be taken into account. This integral then evaluates to

U(ρ) = 2Gmµ ln

(
ρ

ρ0

)
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