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Recap

We are still working with a system of N spin-1/2 particles. With si = 1/2, our energy can
be represented by

E = −B
N∑
i

si = −BN↑ −N↓
2

= −BM = −nBm

with M being our magnetization and m being our magnetization density. Our multiplicity
function can then be defined as

Ω(N↑) =
N !

N↑!(N −N↑)!

Ω(M) =
N !

(N
2

+M)!(N
2
−M)!

Stirling’s Approximation

N ! ≈ exp(N ln(N)−N +O(ln(N)))

We’re going to go ahead and try to prove this approximation for ourselves. First we are
going to take the natural logarithm of the left and see if we can get it to look like what lies
within the exponential on the right side.

ln(N !) =
N∑

n=1

ln(n)

With sufficiently large N , that sum can be turned into an integral which leads us to what
we want.
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N∑
n=1

ln(n) =

∫ N

1

dn ln(n) = N ln(N)−N +O(ln(N))

We can use this to get Ω(M) in a form that is easier to use.

Ω(M) =

exp

(
N ln(N)−N − (

N

2
+M) ln

(
N

2
+M

)
− (

N

2
−M) ln

(
N

2
−M

)
+ (

N

2
+M) + (

N

2
−M)

)
= exp

(
N(ln(N)− (

1

2
+m) ln

(
N(

1

2
+m)

)
− (

1

2
−m) ln

(
N(

1

2
−m)

)
)

)
= exp

(
N(−(

1

2
+m) ln

(
1

2
+m

)
− (

1

2
−m) ln

(
1

2
−m

)
)

)

Define Entropy

S(E) = k ln(Ω(E))

Figure 1. A system with two subsystems. Both subsystems may exchange energy, but not
particles.

If we were to add up the subsystems together, with their respective micro-states and
multiplicity functions, we would find that

Ω12 = Ω1 · Ω2

This can lead to problems since multiplication can get rather complicated very quickly.
It would be a lot easier if we had some quantity that is related to the logarithm of our
multiplicity functions, so our multiplication can get simplified into addition. Luckily, entropy
can do exactly that.
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S12 = k ln(Ω12) = k(ln(Ω1) + ln(Ω2)) = S1 + S2

Using what we found earlier for Ω

S(m) = kN(−(
1

2
+m) ln

(
1

2
+m

)
− (

1

2
−m) ln

(
1

2
−m

)
)

Our probability distribution for this will be

P (m) =
Ω(m)

Ωtot

=
eS(m)/k

2N

We want to be able to find our mean and standard deviation so we need to find our
maximum entropy.

dS

dm
= 0 = −N ln

( 1
2

+m
1
2
−m

)
A quick glance at this and we can tell that we have a minimum or maximum at m = 0.

It would be good practice to check the second derivative to make sure this isn’t a minimum
but that is a task for another day.

Now that we have our entropy, we can go ahead and see what our probability distribution
looks like.

P (m) = 2−Ne
1
k
(S(m)+ 1

2
∂2S
∂m2m

2+...) = fNe
−Nm2

We got that end result from taylor expanded our equation around m = 0. fN is our way
of normalizing our distribution and will be as follows.

fN =
(∫ ∞
−∞

dme−Nm2
)−1

=

√
N

π

This gives us a really pretty equation for our probability.

P (m) =
N

π
e−Nm2

From this equation, we can quickly pull out the standard deviation and the mean for our
case where B = 0.

〈m〉 = 0

σ =
1√
2N
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Thermal Contact

Figure 2. A system with two subsystems. Both subsystems may exchange energy, but not
particles.

We are going to play with the same type of system but now look at it from a perspective
that takes into account temperature and our own intuition on how it behaves. Both E1 and
E2 are free to change but the overall energy of our system E cannot. This enables us to
name a new variable that give us a way to tell when our system is in equilibrium.

E− = E1 − E2

We will be in equilibrium when E− = 0. We want to differentiate our entropy in respect
to energy, but now we have a lot of different energies to look at. Which one do we use? The
energy we will want to look at is the new energy variable we just defined.

∂S

∂E−
= 0 =

( ∂S1

∂E−

)
E,N

+
( ∂S2

∂E−

)
E,N

=
∂S1

∂E1

∂E1

∂E−
+
∂S2

∂E2

∂E2

∂E−

=
( ∂S1

∂E1

)
E1,N1

−
( ∂S2

∂E2

)
E2,N2

= 0

This is a pretty cool result and gives us a relationship we have for temperature T and
how it relates to entropy and energy.

1

T
=
( ∂S
∂E

)
E,N

There are a couple of situations we can find ourselves in. a) T1 = T2 This system will be
in thermal equilibrium so δS = 0.

b) T1 > T2 This system is not in thermal equilibrium but we can figure out what is going
on with the energy exchange fairly easily.

δS =
( 1

T1
− 1

T2

)
δE−
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Since we know δS must be positive due to the second law of thermodynamics, and that
out temperature term is negative, we know δE− < 0. This tells us that E2 will increase and
E1 will decrease which is just as we would expect.

Let’s take a look at our entropy in regards to energy.

S(E) = −kN
((1

2
+

E

BN

)
ln

(
1

2
+

E

BN

)
+
(1

2
− E

BN

)
ln

(
1

2
− E

BN

))
Differentiating this in respect to E we find the following equation.

1

T
=
∂S

∂E
=
−k
B

ln

(
1
2

+ E
BN

1
2
− E

BN

)
Unfortunately, it is impossible, or in the very least extremely difficult, to measure entropy

directly. Fortunately for us, there is a way around it using Heat Capacity which is easily
measurable and can is as follows.

CV (T ) =
(∂E
∂T

)
N,V
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