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Problem 1

(Taylor 1.19) Let r,v,a be respectively the position, velocity, and acceleration
of a particle. Show that

d

dt
[a · (v× r)] = ȧ · (v× r)

Solution This problem can get a little messy so I am going to break it up into a couple
of pieces. Let us say that v × r = Γ. This will allow us to break the problem down into a
cross product part and a dot product part. We know rewrite the problem as

d

dt
(a · Γ) = ȧ · Γ

Taking the time derivative, we get

ȧ · Γ + a · Γ̇ = ȧ · Γ

We have two similar parts on each side, so after simplifying, we find for our proposed
relation to be true, the following equation must be true.

a · Γ̇ = 0

Let’s try to find Γ̇ before this gets any more messy.

d

dt
(Γ) =

d

dt
(x̂(v2r3 − r2v3)− ŷ(v1r3 − v3r1) + ẑ(v1r2 − v2r1))

= x̂(a2r3 + v2v3 − v3v2 − r2a3)− ŷ(a1r3 + v1v3 − a3r1 − v3v1) + ẑ(a1r2 + v1v2 − v1v2− a2r1)

= x̂(a2r3 − r2a3) + ŷ(a3r1 − a1r3) + ẑ(a1r2 − a2r1)

We can now take the dot product and see if that can help clear this mess up.
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a1(a2r3 − r2a3) + a2(a3r1 − a1r3) + a3(a1r2 − a2r1)

= a1a2r3 − r2a1a3 + a2a3r1 − a1a2r3 + a1a3r2 − a3a2r1 = 0

Since that whole mess is 0, we can safely say d
dt

[a · (v× r)] = ȧ · (v× r).

Problem 2

Use the BAC-CAB rule to decompose any vector D into a piece that is parallel
to n̂, an arbitrary unit vector, and another piece that is perpendicular to n̂.

Solution We begin by decomposing our vector D into its components parallel and per-
pendicular to some arbitrary unit vector n̂, with the perpendicular component lying within
the D − n plane.

We can get our parallel component with an easy dot product:

(D · n̂)n̂

And we can find our perpendicular component using a series of cross products. The first
cross product gives us a perpendicular vector, but it lies perpendicular to our desired plane,
so we can use a second cross product to bring it into the plane.

n̂× (D× n̂)

Now that we have our components, we can add them together and hopefully find D.

(D · n̂)n̂+ n̂× (D× n̂) = (D · n̂)n̂+D(n̂ · n̂)− n̂(n̂ ·D) = D

This is exactly what we wanted! We used the BAC-CAB rule to break apart that triple
vector product into to components that can be canceled out with the piece of D that runs
parallel to n̂ to return our desired vector.

Problem 3

We want to find the velocity and acceleration of a particle P in three dimensions
using spherical coordinates. The position vector of P in this case is

r = rr̂

(a) Before differentiate the position vector with respect to time to obtain the
velocity of P, express the position-dependent unit vectors r̂, ŷ, and ẑ.
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(b) Determine the velocity of P, v, in terms of r̂, θ̂, and φ̂.
(c) Determine the acceleration of P, a, in terms of r̂, θ̂, and φ̂.

Solution a) We can represent an arbitrary position vector in cartesian coordinates as such.

r = xx̂+ yŷ + zẑ

Switching the magnitudes of each component into spherical coordinates gives us

r = r sin(θ) cos(φ)x̂+ r sin(θ) sin(φ)ŷ + r cos(θ)ẑ

We can find all of our unit vectors in spherical coordinates by differentiating that equation
in respect to r, θ and φ and then normalize them.

dr
da∣∣dr
da

∣∣ = â

Let’s start off finding r̂.

dr

dr
= sin(θ) cos(φ)x̂+ sin(θ) sin(φ)ŷ + cos(θ)ẑ

∣∣∣dr
dr

∣∣∣ =
√

sin2(θ) cos2(φ) + sin2(θ) sin2(φ) + cos2(θ) =
√

sin2(θ) + cos2(θ) = 1

So our radial unit vector is

r̂ = sin(θ) cos(φ)x̂+ sin(θ) sin(φ)ŷ + cos(θ)ẑ

Next we’ll take a shot at finding θ̂.

dr

dθ
= r cos(θ) cos(φ)x̂+ r cos(θ) sin(φ)ŷ − r sin(θ)ẑ

∣∣∣dr
dθ

∣∣∣ = r
√

cos2(θ) cos2(φ) + cos2(θ) sin2(φ) + sin2(θ) = r
√

cos2(θ) + sin2(θ) = r

So our azimuthal unit vector is

θ̂ = cos(θ) cos(φ)x̂+ cos(θ) sin(φ)ŷ − sin(θ)ẑ

Finally, we will hunt down φ̂.
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dr

dφ
= −r sin(θ) sin(φ)x̂+ r sin(θ) cos(φ)ŷ

∣∣∣dr
dφ

∣∣ = r
√

sin2(θ) sin2(φ) + sin2(θ) cos2(φ) = r sin(θ)

So our final unit vectors are:

r̂ = sin(θ) cos(φ)x̂+ sin(θ) sin(φ)ŷ + cos(θ)ẑ

θ̂ = cos(θ) cos(φ)x̂+ cos(θ) sin(φ)ŷ − sin(θ)ẑ

φ̂ = − sin(φ)x̂+ cos(φ)ŷ

b) We can find the velocity of P by differentiating our position vector in respect to t.

v =
dr

dt
= ṙr̂ + r ˙̂r

We can use the chain rule to break up that second term’s derivative to make it easier to
solve.

v = ṙr̂ + r
(dr̂
dr

dr

dt
+
dr̂

dθ

dθ

dt
+
dr̂

dφ

dφ

dt

)
Let’s differentiate our radial unit vector and plug those values in and see what happens.

v = ṙr̂+r((cos(θ) cos(φ)x̂+cos(θ) sin(φ)ŷ−sin(θ)ẑ)θ̇+(− sin(θ) sin(φ)x̂+sin(θ) cos(φ)ŷ)φ̇)

v = ṙr̂ + rθ̇θ̂ + r sin(θ)φ̇φ̂

c) The bad news is that finding acceleration will be a lot messier, but the good news is
we just need to use that same technique we used in the previous section to find our solution.
We are going to differentiate the velocity in pieces by their respective component to make it
easier to keep track of what we are doing.

A = ṙr̂

B = rθ̇θ̂

C = r sin(θ)φ̇φ̂

Let’s start with the radial part A.

dA

dt
= r̈r̂ + ṙ ˙̂r = r̈r̂ + ṙ(θ̇θ̂ + φ̇ sin(θ)φ̂)
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The next part we will look at is the azimuthal part.

dB

dt
= ṙθ̇θ̂ + rθ̈θ̂ + rθ̇

˙̂
θ = θ̂(ṙθ̇ + rθ̈) + rθ̇

(dθ̂
dr

dr

dt
+
dθ̂

dθ

dθ

dt
+
dθ̂

dφ

dφ

dt

)
= θ̂(ṙθ̇ + rθ̈) + rθ̇(−r̂θ̇ + cos(θ)φ̇φ̂) = −rθ̇2r̂ + (ṙθ̇ + rθ̈)θ̂ + rθ̇φ̇ cos(θ)φ̂

We just need one more piece, so we’re onto the polar part.

dC

dt
= ṙ sin(θ)φ̇φ̂+ r cos(θ)θ̇φ̇φ̂+ r sin(θ)φ̈φ̂+ r sin(θ)φ̇

˙̂
φ

= φ̂(ṙ sin(θ)φ̇+ r cos(θ)θ̇φ̇+ r sin(θ)φ̈) + r sin(θ)φ̇
(dφ̂
dφ

dφ

dt

)
= r̂(− sin2(θ)rφ̇2) + θ̂(−r sin(θ) cos(θ)φ̇2) + φ̂(ṙ sin(θ)φ̇+ r cos(θ)θ̇φ̇+ r sin(θ)φ̈

Putting these all together using the magical power of addition we get our expression for
acceleration in spherical coordinates.

a = r̂(r̈−rθ̇2−rφ̇2 sin2(θ))+θ̂(2ṙθ̇+rθ̈−r sin(θ) cos(θ)φ̇2)+φ̂(2ṙφ̇ sin(θ)+2rθ̇φ̇ cos(θ)+r sin(θ)φ̈)

Problem 4

In a rainy day, a wheel of radius R is rolling without slipping along a muddy
road with a speed V . Particles of mud attached to the rim of the wheel are
being continuously thrown off from all points of the wheel. If V 2 > Rg, where g
is the acceleration of gravity, show that the maximum height above the road H,
attained by the mud will be

H = R +
V 2

2g
+
R2g

2V 2

Solution We can say that the vertical height of the mud as it initially leaves the wheel as

y = R−R cos(θ)

With θ being the angle between the ground and a point on the wheel. We can differentiate
this in respect to time to see how fast the mud is leaving the wheel in the vertical direction.

dy

dt
= R sin(θ)θ̇
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And since V = Rθ̇.

dy

dt
= V sin(θ)

Now that we have our vertical position for where the mud will launch from, we can treat
the problem like a standard projectile problem.

V 2 = V 2
i − 2gh

Plugging our information, we can solve for h.

h =
V 2 sin2(θ)

2g

Our total height equation can the be defined as

H = R−R cos(θ) +
V 2 sin2(θ)

2g

We will differentiate it with respect to the angle to maximize the function.

dH

dt
= R sin(θ) +

V 2 sin(θ) cos(θ)

g
= 0

R sin(θ) =
−V 2 sin(θ) cos(θ)

g

cos(θ) =
−Rg
V 2

With V 2 > Rg, we know that the cosine will be defined so we can plug it into our height
equation.

H = R +
R2g

V 2
+
V 2(1− cos2(θ))

2g

= R +
R2g

V 2
+
V 2

2g
− R2g2

2V 2g

H = R +
R2g

2V 2
+
V 2

2g

Which is what we intended to show.
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Problem 5

(Taylor 1.32) We are used to the fact that Newton’s third law holds in mechanics.
However, this is not absolutely the case in electromagnetism. To illustrate this
point, consider the situation shown in Figure ??. The electric and magnetic
fields at location r1 due to charge q2 at r2 moving with constant velocity v2 (with
v2 << c) are

E(r1) =
1

4πε0

q2
r2
r̂ , B(r1) =

µ0

4π

q2
r2
v2 × r̂

where r = r1−r2 is the vector pointing from r2 to r1. If F el
12 and Fmag

12 denote the
electric and magnetic forces on charge q1 at r1 with velocity v1, show that Fmag

12 ≤
(v1v2/c

2)F el
12. This demonstrates that it is reasonable to ignore the magnetic force

between two moving charges in the non-relativistic regime.

Solution Our electric force in this situation will be

F el
12 = q1E(r1)

We only really care about the magnitude of this which will be

|F el
12| =

1

4πε0

q1q2
r2

The magnetic force can be represented in a similar way

Fmag
12 = q1v1 ×B(r1)

Like before, we only really care about its maximum magnitude. This will have when
v1 ⊥ B.

|Fmag
12 | = µ

4π

q1q2v1v2
r2

Now let’s take the ratio between these two magnitudes and see what happens.

|Fmag
12 |
|F el

12|
= µε0v1v2 =

v1v2
c2

Since c is the speed of light and is far greater than any speed in a non-relativistic regime,
the magnitude of the magnetic force is so much smaller than the magnitude of the electric
force, and can be ignored.
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Problem 6

(Taylor 2.39) A cyclist coasts to a stop, he is subject to two forces, the quadratic
force of air resistance, f = −cv2 (with c being a constant), and a constant frictional
force fr of about 3 N . The former is dominant at high and medium speeds, the
latter at low speed.

(a) Write down the equation of motion while the cyclist is coasting to a stop.
(b) Using the numerical values given in Taylor 2.26, determine how long the

cyclist takes to slow from a speed of 20 m/s to 15 m/s, to 10 and 5 m/s, and to
a full stop.

Solution a) Using Newton’s second law, we know that

F = ma = mv̇ = −cv2 − f

We are looking for an equation of time t(v) so we will have to separate variables and
integrate.

dv

cv2 + f
− −dt

m

dv

v2 + f
c

=
−c
m
dt√

c

m
(arctan

(
v

√
c

f

)
− arctan

(
v

√
c

f

)
) =
−ct
m

t =
−m√
cf

arctan

(
v

√
c

f

)
+

m√
cf

arctan

(
v0

√
c

f

)
b) We are now ready to plug our values in. m = 80 kg, c = 0.20 N/(m/s)2, and at t = 0

the cyclist has an initial speed v0 = 20 m/s.
Plugging in all of our values into the previous equation, we get the following.

t(15) ≈ 363.32s

t(10) ≈ 1054.66s

t(5) ≈ 2768.06s

t(v = 0) ≈ 8163.25s
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Problem 7

(Taylor 2.55) A charged particle of mass m and charge q moves in uniform electric
and magnetic fields, E in the y direction and B in the z direction respectively.
Suppose the particle starts to move in the x direction with speed vx = vx0.

(a) Write down the equation of motion for the particle and show that the
motion remains in the plane z = 0.

(b) Prove that there is a unique value of vx0, called the drift speed vdr, for
which the particle moves undeflected through the fields. (This is the basis of
velocity selectors, which select particles traveling at one chosen speed from a
beam of particles with different speeds.)

(c) Solve the equations of motion to get the velocity of the particles as a
function of t, for arbitrary values of vx0.

(d) Find the position as a function of t, and use a computer program to show
the trajectory for various values of vx0.

Solution a) The force on this charged particle can be represented as

F = mv̇ = qE + qv×B = qEx̂+ (ẋx̂+ ẏŷ + żẑ) × (Bẑ)

= mẍx̂+mÿŷ +mz̈ẑ = x̂(qẏB) + ŷ(qE − qẋB)

This gives us a few equations, one for each component.

ẍ =
qẏB

m

ÿ =
qE − qẋB

m

z̈ = 0

The third equation tells that the velocity of the particle in the z direction is constant.
Since the initial velocity is only in the x direction, we know that all movement of the particle
is restricted to the x-y plane at z = 0.

b) In order for the particle to move undeflected while moving through both fields, the
magnetic and electric forces must be equal.

Fe = Fm

qE = qvdrB

vdr =
E

B

Our fields are fixed so vdr is unique and is our desired drift speed.
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c) We are going to begin this part by defining a couple of variables to help us out.

ẋ− vdr = u

ẏ = ẇ

We are doing this because the y component has an extra term in it in our equations of
motion and we want to work around it. Since vdr is a constant, our derivatives will be the
same. Our equations of motion that are relevant will then be

ẍ = u̇ =
quB

m

ÿ = ẇ =
−qwB
m

This gives us a couple of solutions to these differential equations.

u = A cos

(
qBt

m

)
w = −A sin

(
qBt

m

)
At t = 0 the velocity will be v = ẋ = v0x. We can then solve for A.

ẋ = v0x = vdr + A cos(0)

A = v0x − vdr
Plugging this into our velocity equations gives us what we have looking for.

ẋ = vdr + (v0x − vdr) cos

(
qBt

m

)
ẏ = (vdr − v0x) sin

(
qBt

m

)
ż = 0

d) We are going to start integrating the equations we just found in respect to time. To
make life easier on myself I came going to define

ω =
qB

m

Let’s begin with find the position in the x direction.

ẋ = vdr + (v0x − vdr) cos(ωt)
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x = (vdrt
′ +
(v0x − vdr

ω

)
sin(ωt′))

∣∣∣t
0

= vdr +
(v0x − vdr

ω

)
sin(ωt) = vdrt+R sin(ωt)

With

R =
v0x − vdr

ω

Now let’s find out the position in the y direction.

ẏ = (vdr − v0x) sin(ωt)

y = (v0x − vdr) cos(ωt′)
∣∣∣t
0

=
(v0x − vdr

ω

)
(cos(ωt)− 1)

= R(cos(ωt)− 1)

We are going to let vdr = 1 and ω = 1 to make graphing easier. v0x will be multiples of
vdr to make it easier to graph, as well.

Figure 1: v0x = 0.5
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Figure 2: v0x = 1

Figure 3: v0x = 1.5
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Figure 4: v0x = 2

Figure 5: v0x = 3
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Figure 6: v0x = 6

Figure 7: v0x = 10
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Problem 8

(Taylor 3.4) Two girls, each with mass m, are standing at one end of a stationary
railroad flatcar with frictionless wheels and mass mc. Either girl can run to the
other end of the flatcar and jump off with the same speed u relative to the car.

(a) Use conservation of momentum to find the speed of the recoiling car if
the two girls run and jump simultaneously.

(b) What is the speed of the recoiling car if the second girl starts running
only after the first one has already jumped? Which procedure gives the greater
speed to the car?

Solution a) The two girls are acting together, and can be considered one girl at twice the
mass. Using conservation of momentum, that gives us

2m(U + v) +mcv

v =
−2mu

2m+mc

b) We’ll have to break the girls running separately into two events. When the first girl
runs, we can pretend that the other girl and the cart have fused together and are one. We
can then use conservation of momentum in the girl-girlcar system.

m(u+ v1) + (m+mc)v1 = 0

v1 =
−mu

mc + 2m

Once the first girl jumps off the car, the total mass of the system changes, and the
remaining girlcar is going at v1. We now can use the conservation of momentum again to
solve the speed of the car after the second girl runs off of it.

m(u+ v2) +mcv2 = (m+mc)v1

v2(m+mc) = (m+mc)v1 −mu

v2 =
−mu

mc + 2m
− mu

mc +m

The first term is half the magnitude of the result in part a and the second term is larger
than half of part a, so the second procedure gives the greater speed to the car.
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